login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+1)X4 0..3 arrays with the number of clockwise edge increases in every 2X2 subblock equal to one
1

%I #5 Mar 31 2012 12:37:10

%S 7308,187144,4379116,101839532,2359157212,54618168204,1264215787012,

%T 29260651415912,677236925374268,15674577888857704,362786132475380732,

%U 8396637945151216420,194339083496368616324,4497952569798833211648

%N Number of (n+1)X4 0..3 arrays with the number of clockwise edge increases in every 2X2 subblock equal to one

%C Column 3 of A206085

%H R. H. Hardin, <a href="/A206080/b206080.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 33*a(n-1) -153*a(n-2) -2914*a(n-3) +29293*a(n-4) -22100*a(n-5) -725200*a(n-6) +2819308*a(n-7) +3122780*a(n-8) -45128529*a(n-9) +98796791*a(n-10) +74693500*a(n-11) -799065415*a(n-12) +1793549808*a(n-13) -2104481523*a(n-14) +1563288212*a(n-15) -1239857155*a(n-16) +2614896451*a(n-17) -8130657969*a(n-18) +14522094264*a(n-19) -3133133618*a(n-20) -36371735381*a(n-21) +70236155444*a(n-22) -54259036473*a(n-23) +3431401089*a(n-24) +23049326400*a(n-25) -5326422621*a(n-26) -18665116061*a(n-27) +18903636257*a(n-28) -5707108448*a(n-29) -1729999182*a(n-30) +1074411623*a(n-31) +988992817*a(n-32) -1263288255*a(n-33) +607788300*a(n-34) -133832544*a(n-35) -6002418*a(n-36) +12745324*a(n-37) -3725768*a(n-38) +510104*a(n-39) -27824*a(n-40)

%e Some solutions for n=4

%e ..2..2..1..1....0..0..0..1....2..0..2..2....0..1..0..0....3..0..0..3

%e ..2..3..0..1....2..0..1..1....3..0..0..0....1..1..3..3....3..3..3..3

%e ..3..3..0..0....2..0..1..0....3..3..0..2....0..1..1..3....0..1..1..1

%e ..3..0..0..2....0..0..0..0....3..0..0..2....0..1..2..2....1..1..3..3

%e ..3..3..0..0....2..2..2..0....3..0..1..1....0..1..2..1....1..2..3..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Feb 03 2012