login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206022
Riordan array (1, x*exp(arcsinh(-2*x))).
1
1, 0, 1, 0, -2, 1, 0, 2, -4, 1, 0, 0, 8, -6, 1, 0, -2, -8, 18, -8, 1, 0, 0, 0, -32, 32, -10, 1, 0, 4, 8, 30, -80, 50, -12, 1, 0, 0, 0, 0, 128, -160, 72, -14, 1, 0, -10, -16, -28, -112, 350, -280, 98, -16, 1, 0, 0, 0
OFFSET
0,5
COMMENTS
Riordan array (1, x*(sqrt(1+4x^2)-2x)); inverse of Riordan array (1, x/sqrt(1-4x)), see A205813.
The g.f. for row sums (1,1,-1,-1,3,1,-9,1,27,13,-81,67,243,...) is (1+2*x^2+x*sqrt(1+4*x^2))/(1+3*x^2).
Triangle T(n,k), read by rows, given by (0, -2, 1, -1, 1, -1, 1, -1, 1, -1, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
FORMULA
T(n,n) = 1, T(n+1,n) = -2n = -A005843(n), T(n+2,n) = 2*n^2 = A001105(n), T(n+3,n) = -A130809(n+1), T(2n,n) = A009117(n), T(2n+3,1) = (-1)^n*2*A000108(n).
T(n,k) = T(n-2,k-2) - 4*T(n-2,k-1), for k >= 2.
EXAMPLE
Triangle begins:
1
0, 1
0, -2, 1
0, 2, -4, 1
0, 0, 8, -6, 1,
0, -2, -8, 18, -8, 1
0, 0, 0, -32, 32, -10, 1
0, 4, 8, 30, -80, 50, -12, 1
0, 0, 0, 0, 128, -160, 72, -14, 1
0, -10, -16, -28, -112, 350, -280, 98, -16, 1
0, 0, 0, 0, 0, -512, 768, -448, 128, -18, 1
0, 28, 40, 54, 96, 420, -1512, 1470, -672, 162, -20, 1
CROSSREFS
Cf. A104624 (column k=1).
Sequence in context: A061009 A144106 A104558 * A115247 A204163 A122542
KEYWORD
easy,sign,tabl
AUTHOR
Philippe Deléham, Feb 02 2012
STATUS
approved