The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206004 Number of (n+1) X 3 0..2 arrays with the number of clockwise edge increases in every 2 X 2 subblock equal to one, and every 2 X 2 determinant nonzero. 1
78, 300, 980, 3706, 12304, 45810, 154346, 567112, 1932816, 7031026, 24170780, 87268194, 301959592, 1084079204, 3769438358, 13475470000, 47028047126, 167585570856, 586477834058, 2084911242168, 7311507381518, 25945246790130 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Column 2 of A206010.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 13*a(n-2) - 17*a(n-3) - 34*a(n-4) - 9*a(n-5) + 23*a(n-6) + a(n-7) - 4*a(n-8) + a(n-9).
Empirical g.f.: 2*x*(39 + 72*x - 317*x^2 - 414*x^3 - 48*x^4 + 293*x^5 + x^6 - 48*x^7 + 13*x^8) / (1 - 2*x - 13*x^2 + 17*x^3 + 34*x^4 + 9*x^5 - 23*x^6 - x^7 + 4*x^8 - x^9). - Colin Barker, Jun 13 2018
EXAMPLE
Some solutions for n=4:
..1..0..2....2..2..1....2..1..2....1..0..1....1..2..2....2..0..2....0..2..0
..1..1..1....2..1..1....0..1..1....1..1..1....1..1..2....2..2..2....1..2..2
..2..1..2....2..2..0....1..1..2....1..2..1....0..1..1....0..1..2....1..1..2
..2..2..2....0..2..2....2..1..1....1..1..1....1..1..0....1..1..1....0..1..1
..1..2..1....1..1..2....2..0..1....1..2..0....0..1..2....0..1..0....1..1..0
CROSSREFS
Cf. A206010.
Sequence in context: A068130 A118938 A362546 * A317412 A231393 A231461
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 02 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 03:39 EDT 2024. Contains 372782 sequences. (Running on oeis4.)