login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse Euler transform of A195980.
3

%I #24 Oct 04 2018 09:56:50

%S 1,1,2,4,10,23,61,157,426,1163,3253,9172,26236,75634,220021,644305,

%T 1898977,5626720,16754652,50104781,150427938,453214878,1369857943,

%U 4152559458,12621816592,38459047705,117453028937,359455509767,1102239999454,3386090204843,10419804578693,32115276396739,99131502581481,306422345148052,948423189115351

%N Inverse Euler transform of A195980.

%C The sequence is conjectured to be positive, nondecreasing and strictly convex.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H A. D. Sokal, <a href="http://arxiv.org/abs/1106.1003">The leading root of the partial theta function</a>, arXiv preprint arXiv:1106.1003 [math.CO], 2011-2012; Adv. Math. 229 (2012), no. 5, 2603-2621.

%t nmax = 35;

%t theta0[x_, y_] = Sum[x^n y^(n (n-1)/2), {n, 0, (1/2) (1 + Sqrt[1 + 8 nmax]) // Ceiling}];

%t xi0[y_] = -Sum[b[n] y^n, {n, 0, nmax}];

%t cc = CoefficientList[theta0[xi0[y], y] + O[y]^(nmax + 1) // Normal // Collect[#, y]&, y];

%t Do[s[n] = Solve[cc[[n+1]] == 0][[1, 1]]; cc = cc /. s[n], {n, 0, nmax}];

%t A195980 = Table[b[n] /. s[n], {n, 1, nmax}];

%t mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];

%t EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i b[[i]] - Sum[c[[d]] b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i) Sum[mob[i, d] c[[d]], {d, 1, i}]]]; Return[a]];

%t EULERi[A195980] (* _Jean-François Alcover_, Oct 04 2018 *)

%Y Cf. A195980, A206000.

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Feb 02 2012, Feb 03 2012