login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A205998 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the number of clockwise edge increases in every 2X2 subblock equal to two, and every 2X2 determinant nonzero 9

%I

%S 26,92,92,330,498,330,1184,2712,2712,1184,4250,14866,22612,14866,4250,

%T 15252,81278,189430,189430,81278,15252,54738,445352,1588523,2437024,

%U 1588523,445352,54738,196448,2436706,13324720,31326018,31326018,13324720

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the number of clockwise edge increases in every 2X2 subblock equal to two, and every 2X2 determinant nonzero

%C Table starts

%C .....26.......92.......330........1184..........4250...........15252

%C .....92......498......2712.......14866.........81278..........445352

%C ....330.....2712.....22612......189430.......1588523........13324720

%C ...1184....14866....189430.....2437024......31326018.......403768668

%C ...4250....81278...1588523....31326018.....619044912.....12247835464

%C ..15252...445352..13324720...403768668...12247835464....372736115952

%C ..54738..2436706.111764603..5195655486..242338696294..11329617750556

%C .196448.13344256.937463556.66947088104.4795751505632.344896522846756

%H R. H. Hardin, <a href="/A205998/b205998.txt">Table of n, a(n) for n = 1..312</a>

%e Some solutions for n=4 k=3

%e ..2..0..2..0....1..1..2..1....0..2..1..1....1..2..0..1....1..0..1..0

%e ..2..1..0..1....0..2..1..2....2..1..0..2....2..0..1..0....0..2..2..1

%e ..0..2..1..2....2..0..2..0....1..2..1..0....1..1..2..1....2..1..0..2

%e ..1..0..2..0....0..1..0..1....2..0..2..1....0..2..0..2....0..2..1..0

%e ..2..1..0..2....2..2..1..2....2..1..0..2....1..0..2..0....1..0..2..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Feb 02 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 11:02 EDT 2021. Contains 345397 sequences. (Running on oeis4.)