login
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with the number of clockwise edge increases in every 2X2 subblock equal to one, and every 2X2 determinant nonzero
9

%I #5 Mar 31 2012 12:37:07

%S 76,389,389,1828,2684,1828,9144,15561,15561,9144,43572,104311,67372,

%T 104311,43572,215294,625713,583542,583542,625713,215294,1035724,

%U 4085161,2570656,7177505,2570656,4085161,1035724,5082472,25017018,22176946

%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with the number of clockwise edge increases in every 2X2 subblock equal to one, and every 2X2 determinant nonzero

%C Table starts

%C ......76.......389......1828........9144........43572.........215294

%C .....389......2684.....15561......104311.......625713........4085161

%C ....1828.....15561.....67372......583542......2570656.......22176946

%C ....9144....104311....583542.....7177505.....40724536......535691452

%C ...43572....625713...2570656....40724536....160958484.....2853968414

%C ..215294...4085161..22176946...535691452...2853968414....88272553560

%C .1035724..25017018..98991836..3047588270..10728448308...454195592550

%C .5082472.160810946.849405824.42247423238.211429772688.16886828676263

%H R. H. Hardin, <a href="/A205926/b205926.txt">Table of n, a(n) for n = 1..180</a>

%e Some solutions for n=4 k=3

%e ..1..1..1..1....2..1..0..3....0..2..2..1....1..0..1..3....3..2..0..2

%e ..2..3..1..3....3..3..3..3....2..2..1..1....1..1..1..2....0..2..2..2

%e ..3..3..3..3....2..3..0..3....2..1..1..2....0..1..2..2....2..2..0..2

%e ..2..3..1..3....3..3..3..3....2..2..1..1....1..1..1..2....3..2..2..2

%e ..3..3..3..3....0..1..3..1....0..1..1..0....1..2..1..1....2..2..1..2

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Feb 01 2012