login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205921
Number of (n+1)X4 0..3 arrays with the number of clockwise edge increases in every 2X2 subblock equal to one, and every 2X2 determinant nonzero
1
1828, 15561, 67372, 583542, 2570656, 22176946, 98991836, 849405824, 3837701468, 32699583658, 149381183572, 1262924581602, 5828725185288, 48878384865034, 227757652474132, 1894271871158330, 8906948226136424, 73477236256867430
OFFSET
1,1
COMMENTS
Column 3 of A205926
LINKS
FORMULA
Empirical: a(n) = 119*a(n-2) +4*a(n-3) -5671*a(n-4) -332*a(n-5) +140502*a(n-6) +10096*a(n-7) -1946081*a(n-8) -121492*a(n-9) +14700531*a(n-10) +208884*a(n-11) -48951435*a(n-12) +4024144*a(n-13) -33808327*a(n-14) +31195156*a(n-15) +638938677*a(n-16) -621414254*a(n-17) -1072066945*a(n-18) +2389471556*a(n-19) -139848819*a(n-20) -4343451250*a(n-21) -8924971670*a(n-22) +8604001380*a(n-23) +41032270257*a(n-24) -17581883290*a(n-25) -41163594096*a(n-26) +31849234498*a(n-27) -5655121439*a(n-28) -14589728092*a(n-29) +62766122284*a(n-30) -23316251278*a(n-31) -64429104908*a(n-32) +15204624364*a(n-33) +20441413453*a(n-34) +5918648096*a(n-35) +3638449139*a(n-36) -3873731102*a(n-37) -2437649449*a(n-38) +113148320*a(n-39) +628657782*a(n-40) +146176756*a(n-41) -79826388*a(n-42) -11383360*a(n-43) +2290236*a(n-44) +1090352*a(n-45) -354504*a(n-46) -2240*a(n-47) +14112*a(n-48) for n>51
EXAMPLE
Some solutions for n=4
..1..0..1..2....3..1..3..1....3..3..0..3....0..2..2..1....1..0..2..0
..1..1..1..1....0..1..1..1....2..3..3..3....2..2..1..1....2..2..2..3
..1..2..1..3....1..1..2..3....2..2..3..1....2..1..1..2....3..1..2..2
..1..1..1..2....1..2..2..2....2..3..3..3....2..2..1..1....0..1..1..2
..2..0..1..1....1..1..2..0....2..2..3..0....0..1..1..0....1..1..2..2
CROSSREFS
Sequence in context: A167266 A177786 A235073 * A196895 A151644 A031934
KEYWORD
nonn
AUTHOR
R. H. Hardin Feb 01 2012
STATUS
approved