login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Pell(n)*A109064(n) for n >= 1 with a(0)=1.
3

%I #26 Dec 14 2017 03:46:25

%S 1,-5,10,50,-180,-145,-700,5070,10200,-34475,11890,-344460,415800,

%T 2007660,-2423460,1950250,-25895760,90935120,96047350,-662510900,

%U -239916420,-2316837900,5593341480,24756454910,-27166986000,-6558690605,-190008957720,764537004500

%N a(n) = Pell(n)*A109064(n) for n >= 1 with a(0)=1.

%C Compare to g.f. of A109064, which is the Lambert series identity:

%C 1 - 5*Sum_{n>=1} L(n,5)*n*x^n/(1-x^n) = eta(x)^5/eta(x^5).

%C Here L(n,5) is the Legendre symbol given by A080891(n).

%H G. C. Greubel, <a href="/A205884/b205884.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: 1 - 5*Sum_{n>=1} Pell(n)*L(n,5)*n*x^n / (1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where L(n,5) is the Legendre symbol, Pell(n) = A000129(n), and A002203 is the companion Pell numbers.

%e G.f.: A(x) = 1 - 5*x + 10*x^2 + 50*x^3 - 180*x^4 - 145*x^5 - 700*x^6 + ...

%e where A(x) = 1 - 1*5*x + 2*5*x^2 + 5*10*x^3 - 12*15*x^4 - 29*5*x^5 - 70*10*x^6 + 169*30*x^7 + 408*25*x^8 + ... + Pell(n)*A109064(n)*x^n + ...

%e The g.f. is illustrated by:

%e A(x) = 1 - 5*(+1)*1*1*x/(1-2*x-x^2) - 5*(-1)*2*2*x^2/(1-6*x^2+x^4) - 5*(-1)*3*5*x^3/(1-14*x^3-x^6) - 5*(+1)*4*12*x^4/(1-34*x^4+x^8) - 5*(0)*5*29*x^5/(1-82*x^5-x^10) - 5*(+1)*6*70*x^6/(1-198*x^6+x^12) + ...

%e The values of the Legendre symbol L(n,5) repeat: [1,-1,-1,1,0, ...].

%e The companion Pell numbers (A002203) begin: [2,6,14,34,82,198,478,1154,2786,6726,16238,39202,94642,...].

%t pell[n_] := ((1+Sqrt[2])^n - (1-Sqrt[2])^n)/(2*Sqrt[2]) // Simplify; (* b = A109064 *); b[0] = 1; b[n_] := b[n] = Sum[DivisorSum[j, #*If[Divisible[#, 5], -4, -5] &]*b[n - j], {j, 1, n}]/n; a[0] = 1; a[n_] := pell[n]*b[n]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Apr 24 2017 *)

%o (PARI) {A109064(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)^5/eta(x^5+A), n))}

%o {a(n)=if(n==0,1,Pell(n)*A109064(n))}

%o (PARI) {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}

%o {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}

%o {a(n)=polcoeff(1-5*sum(m=1, n, kronecker(m, 5)*m*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n)}

%Y Cf. A109064, A080891, A000129 (Pell), A002203 (companion Pell), A205882 (variant), A204270.

%K sign

%O 0,2

%A _Paul D. Hanna_, Feb 01 2012