login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

[s(k)-s(j)]/8, where the pairs (k,j) are given by A205867 and A205868, and s(k) denotes the (k+1)-st Fibonacci number.
3

%I #5 Mar 30 2012 18:58:12

%S 1,2,1,4,11,17,29,18,47,36,18,76,72,123,199,198,197,322,305,522,521,

%T 520,323,845,844,843,646,323,1368,1364,1292,2207,3582,3571,3553,3535,

%U 5795,5778,5473,9378,9367,9349,9331,5796,15174,15163,15145,15127

%N [s(k)-s(j)]/8, where the pairs (k,j) are given by A205867 and A205868, and s(k) denotes the (k+1)-st Fibonacci number.

%C For a guide to related sequences, see A205840.

%e The first six terms match these differences:

%e s(6)-s(4) = 13-5 = 8 = 8*1

%e s(7)-s(4) = 21-5 = 16 = 8*2

%e s(7)-s(6) = 21-13 = 8 = 8*1

%e s(8)-s(2) = 34-2 = 32 = 8*4

%e s(10)-s(1) = 89-1 = 88 = 8*11

%e s(11)-s(5) = 144-8 = 136 =8*17

%t s[n_] := s[n] = Fibonacci[n + 1]; z1 = 600; z2 = 50;

%t f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];

%t Table[s[n], {n, 1, 30}]

%t u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]

%t Table[u[m], {m, 1, z1}] (* A204922 *)

%t v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]

%t w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]

%t d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]

%t c = 8; t = d[c] (* A205866 *)

%t k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]

%t j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2

%t Table[k[n], {n, 1, z2}] (* A205867 *)

%t Table[j[n], {n, 1, z2}] (* A205868 *)

%t Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205869 *)

%t Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205870 *)

%Y Cf. A204892, A205867, A205869.

%K nonn

%O 1,2

%A _Clark Kimberling_, Feb 02 2012