login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205833
Number of (n+1)X6 0..2 arrays with the number of clockwise edge increases in every 2X2 subblock equal to two
1
6132, 122526, 2531223, 52826862, 1105752330, 23163320754, 485313697782, 10168541874792, 213057191546673, 4464093891685218, 93534131935237503, 1959777527759278002, 41062309396848183363, 860359480739604665088
OFFSET
1,1
COMMENTS
Column 5 of A205836
LINKS
FORMULA
Empirical: a(n) = 50*a(n-1) -967*a(n-2) +9966*a(n-3) -61665*a(n-4) +238876*a(n-5) -566620*a(n-6) +685346*a(n-7) +102414*a(n-8) -1329090*a(n-9) -88722*a(n-10) +6610223*a(n-11) -14921326*a(n-12) +15135867*a(n-13) -2541029*a(n-14) -13928242*a(n-15) +20602103*a(n-16) -14996664*a(n-17) +5587268*a(n-18) +151004*a(n-19) -1261871*a(n-20) +642104*a(n-21) -175642*a(n-22) +40087*a(n-23) +7838*a(n-24) -9227*a(n-25) +687*a(n-26) -82*a(n-27) -64*a(n-28) +3*a(n-29) -a(n-30)
EXAMPLE
Some solutions for n=4
..2..2..0..0..1..0....2..0..0..1..2..0....1..1..0..2..1..0....2..0..0..1..0..1
..1..0..2..1..2..1....0..2..1..0..1..0....0..2..1..0..2..1....1..2..1..2..1..2
..0..1..0..2..0..2....2..0..2..1..2..1....2..0..2..1..0..2....2..1..2..1..2..0
..1..2..1..0..2..0....0..1..0..2..0..2....2..1..0..2..1..0....0..2..1..0..2..1
..1..0..2..1..0..1....1..2..1..0..1..0....0..2..1..0..2..1....1..0..2..1..0..2
CROSSREFS
Sequence in context: A114131 A144491 A184501 * A152388 A251787 A203982
KEYWORD
nonn
AUTHOR
R. H. Hardin Feb 01 2012
STATUS
approved