login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+1)X6 0..2 arrays with every 2 X 2 subblock having the same number of clockwise edge increases as its horizontal neighbors and no 2 X 2 subblock having the same number of counterclockwise edge increases as its vertical neighbors.
1

%I #7 Oct 09 2015 22:36:28

%S 43155,80916,450339,1302228,10821462,33070572,272838012,848995332,

%T 7154699736,22270343580,186964905354,582627814044,4900745635686,

%U 15269506255620,128370016612560,400006619221596,3363513845901534

%N Number of (n+1)X6 0..2 arrays with every 2 X 2 subblock having the same number of clockwise edge increases as its horizontal neighbors and no 2 X 2 subblock having the same number of counterclockwise edge increases as its vertical neighbors.

%C Column 5 of A205736.

%H R. H. Hardin, <a href="/A205733/b205733.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 46*a(n-2) -632*a(n-4) +2550*a(n-6) +21009*a(n-8) -338191*a(n-10) +2275083*a(n-12) -9977849*a(n-14) +32125123*a(n-16) -80295305*a(n-18) +160702817*a(n-20) -261977927*a(n-22) +350645053*a(n-24) -385924893*a(n-26) +348163021*a(n-28) -255626391*a(n-30) +151046918*a(n-32) -70664605*a(n-34) +25553415*a(n-36) -6884895*a(n-38) +1300906*a(n-40) -153820*a(n-42) +8568*a(n-44) for n>51.

%e Some solutions for n=4:

%e ..2..0..1..1..1..0....0..2..2..2..0..0....1..0..2..2..1..1....0..0..0..1..2..2

%e ..2..0..1..2..1..2....1..2..1..2..0..1....2..0..2..0..0..1....0..1..0..1..2..0

%e ..0..1..2..1..0..2....1..0..2..0..1..2....2..1..0..2..1..0....1..0..1..2..0..2

%e ..0..1..2..1..0..1....2..0..2..0..1..2....0..0..0..0..0..0....1..0..1..2..0..2

%e ..1..0..1..0..2..1....1..1..0..1..2..0....0..0..0..0..0..0....2..1..0..1..2..0

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 30 2012