login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of semiprimes <= n^2.
4

%I #22 Jul 23 2024 18:49:54

%S 0,1,3,6,9,13,17,22,26,34,40,48,56,62,75,82,90,103,114,126,135,149,

%T 164,179,190,202,220,236,253,270,289,304,320,340,360,381,404,425,443,

%U 462,484,508,533,556,581,604,634,655,678,709,738,761,783,813,846,881

%N Number of semiprimes <= n^2.

%C See A205727 and A205728 for related sequences and relationship to Goldbach conjecture.

%H Harvey P. Dale, <a href="/A205726/b205726.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A072000(A000290(n)). - _Michel Marcus_, Sep 02 2013

%t SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; nn = 100; t = Select[Range[nn^2], SemiPrimeQ]; Table[Length[Select[t, # <= n^2 &]], {n, nn}] (* _T. D. Noe_, Jan 30 2012 *)

%t Module[{nn=60,sp},sp=Accumulate[Table[If[PrimeOmega[n]==2,1,0],{n,nn^2}]];Table[sp[[i^2]],{i,nn}]] (* _Harvey P. Dale_, May 29 2014 *)

%o (Python)

%o from sympy import prime, primepi

%o def A205726(n): return int(sum(primepi(n**2//prime(k))-k+1 for k in range(1,primepi(n)+1))) # _Chai Wah Wu_, Jul 23 2024

%Y Cf. A001358, A038108, A205727, A205728.

%K nonn

%O 1,3

%A _Keith Backman_, Jan 30 2012