%I #7 Oct 09 2015 04:21:31
%S 256,1976,2120,15616,12296,17920,124048,95008,75108,151824,986388,
%T 839872,511632,489984,1285076,7854572,7919128,5016144,3227968,3323532,
%U 10876432,62623348,76028256,57716364,41013960,21711080,23019504,92062852
%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2 X 2 subblock having the same number of clockwise edge increases as its horizontal neighbors and no 2 X 2 subblock having the same number of counterclockwise edge increases as its vertical neighbors.
%C Table starts
%C .......256.......1976......15616.......124048.........986388.........7854572
%C ......2120......12296......95008.......839872........7919128........76028256
%C .....17920......75108.....511632......5016144.......57716364.......711793356
%C ....151824.....489984....3227968.....41013960......639426584.....10795687000
%C ...1285076....3323532...21711080....353779964.....7578064080....183567605276
%C ..10876432...23019504..142040528...3024213232....88431310744...2994560119488
%C ..92062852..162377816..939384668..26605030292..1092079388028..54588666013136
%C .779221408.1156073240.6315887616.240164548160.13465529402424.946322990916328
%H R. H. Hardin, <a href="/A205659/b205659.txt">Table of n, a(n) for n = 1..112</a>
%e Some solutions for n=4, k=3:
%e ..2..3..3..2....1..2..0..2....0..2..3..2....0..2..1..3....0..0..2..3
%e ..3..1..0..3....1..2..0..1....1..0..1..3....0..2..1..2....1..0..2..3
%e ..3..3..3..3....0..1..2..1....1..1..1..1....1..0..3..2....3..1..3..0
%e ..3..3..3..3....2..1..3..2....1..1..1..1....0..0..0..0....3..1..3..0
%e ..0..0..0..2....3..1..2..2....2..0..1..2....1..2..3..3....2..3..1..2
%Y Column 1 is A205459.
%Y Row 1 is A205363.
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Jan 30 2012