login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205654
Number of (n+1)X4 0..3 arrays with every 2 X 2 subblock having the same number of clockwise edge increases as its horizontal neighbors and no 2 X 2 subblock having the same number of counterclockwise edge increases as its vertical neighbors.
1
15616, 95008, 511632, 3227968, 21711080, 142040528, 939384668, 6315887616, 43127525028, 293504124464, 2010761042684, 13765588024992, 94808427226252, 651171548709344, 4492250394556948, 30900830935136448, 213414348556901300
OFFSET
1,1
COMMENTS
Column 3 of A205659.
LINKS
FORMULA
Empirical: a(n) = 123*a(n-2) -5628*a(n-4) +148*a(n-5) +116088*a(n-6) -16012*a(n-7) -759206*a(n-8) +691292*a(n-9) -12017217*a(n-10) -15889892*a(n-11) +280873558*a(n-12) +215169248*a(n-13) -2200690341*a(n-14) -1751686412*a(n-15) +4583289563*a(n-16) +7742440744*a(n-17) +49442254890*a(n-18) -3958925736*a(n-19) -446172389405*a(n-20) -186200780620*a(n-21) +1524636536309*a(n-22) +1405395261164*a(n-23) -725819718225*a(n-24) -6088979455296*a(n-25) -16586935486022*a(n-26) +18799040541752*a(n-27) +88923716370883*a(n-28) -44650025794612*a(n-29) -275338133098336*a(n-30) +84816752203836*a(n-31) +618137859409207*a(n-32) -131416583699744*a(n-33) -1079708701420623*a(n-34) +166875575325188*a(n-35) +1502288232779585*a(n-36) -171522340603780*a(n-37) -1654174438614734*a(n-38) +135930301455756*a(n-39) +1366322441174106*a(n-40) -67948082220432*a(n-41) -663033247947406*a(n-42) -12335897290212*a(n-43) -228162624499636*a(n-44) +85841864206000*a(n-45) +1013390893024203*a(n-46) -143989548233328*a(n-47) -1514615583335587*a(n-48) +185064001530040*a(n-49) +1727367950741340*a(n-50) -203853632634644*a(n-51) -1716417117600201*a(n-52) +190684118816484*a(n-53) +1509134660213129*a(n-54) -142294398019888*a(n-55) -1104312799492165*a(n-56) +70860823023280*a(n-57) +547935024501374*a(n-58) -537789934620*a(n-59) +24017490573989*a(n-60) -46208705709452*a(n-61) -437509068236846*a(n-62) +61155341457296*a(n-63) +592258860492842*a(n-64) -51855547665328*a(n-65) -520811261472978*a(n-66) +32976685435752*a(n-67) +343103177446545*a(n-68) -16275942966264*a(n-69) -174587800161488*a(n-70) +6238262983124*a(n-71) +68570740598522*a(n-72) -1834097494060*a(n-73) -20529485948585*a(n-74) +407837207740*a(n-75) +4620423229974*a(n-76) -68747714752*a(n-77) -783563489744*a(n-78) +9331942944*a(n-79) +106462224784*a(n-80) -1170002336*a(n-81) -13373480224*a(n-82) +138491712*a(n-83) +1597556784*a(n-84) -11929920*a(n-85) -139247136*a(n-86) +483840*a(n-87) +5703936*a(n-88) for n>95.
EXAMPLE
Some solutions for n=4:
..0..1..1..2....3..0..3..1....2..3..3..2....1..2..3..2....0..2..1..3
..2..3..2..3....1..3..2..1....3..1..0..3....3..1..2..0....0..2..1..2
..2..1..0..3....1..3..2..3....3..3..3..3....3..1..2..0....1..0..3..2
..3..1..1..1....0..1..0..3....3..3..3..3....1..0..1..2....0..0..0..0
..3..3..0..1....0..0..0..1....0..0..0..2....0..0..1..1....1..2..3..3
CROSSREFS
Sequence in context: A247692 A262793 A206104 * A206183 A205365 A254029
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 30 2012
STATUS
approved