login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Period 6: repeat [1, 6, 5, 4, 9, 0].
1

%I #23 Sep 08 2022 08:46:01

%S 1,6,5,4,9,0,1,6,5,4,9,0,1,6,5,4,9,0,1,6,5,4,9,0,1,6,5,4,9,0,1,6,5,4,

%T 9,0,1,6,5,4,9,0,1,6,5,4,9,0,1,6,5,4,9,0,1,6,5,4,9,0,1,6,5,4,9,0,1,6,

%U 5,4,9,0,1,6,5,4,9,0,1,6,5,4,9,0,1,6

%N Period 6: repeat [1, 6, 5, 4, 9, 0].

%C The members of this sequence are also the units' digits of the indices of those nonzero square numbers that are also triangular.

%C The coefficients of x^n in the numerator of the generating function form the periodic cycle of the sequence.

%H Vincenzo Librandi, <a href="/A205651/b205651.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,1).

%F G.f.: x*(1+6*x+5*x^2+4*x^3+9*x^4) / ((1-x)*(1+x)*(1-x+x^2)*(1+x+x^2)).

%F a(n) = a(n-6) for n>6.

%F a(n) = 25 - a(n-1) - a(n-2) - a(n-3) - a(n-4) - a(n-5) for n>5.

%F For n>0, a(n) = A010879(A001109(n)) = A010879(sqrt(A001110(n))) = mod(A001109(n),10).

%F a(n) = (25-5*cos(n*Pi)-10*cos(n*Pi/3)-10*cos(2*n*Pi/3)-2*sqrt(3)*(3*sin(n*Pi/3)+5*sin(2*n*Pi/3)))/6. - _Wesley Ivan Hurt_, Jun 18 2016

%e The fourth nonzero square number that is also a triangular number is 204^2. As 204 has units' digit 4, then a(4)=4.

%p A205651:=n->(25-5*cos(n*Pi)-10*cos(n*Pi/3)-10*cos(2*n*Pi/3)-2*sqrt(3)*(3*sin(n*Pi/3)+5*sin(2*n*Pi/3)))/6: seq(A205651(n), n=1..100); # _Wesley Ivan Hurt_, Jun 18 2016

%t LinearRecurrence[{0, 0, 0, 0, 0, 1}, {1, 6, 5, 4, 9, 0}, 86]

%t PadRight[{}, 120, {1, 6, 5, 4, 9, 0}] (* _Vincenzo Librandi_, Jun 19 2016 *)

%o (PARI) a(n)=[0, 1, 6, 5, 4, 9][n%6+1] \\ _Charles R Greathouse IV_, Jan 31 2012

%o (Magma) &cat[[1, 6, 5, 4, 9, 0]: n in [0..20]]; // _Wesley Ivan Hurt_, Jun 18 2016

%Y Cf. A001109, A001110, A010879.

%K nonn,easy

%O 1,2

%A _Ant King_, Jan 31 2012