login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1)X3 0..3 arrays with every 2 X 2 subblock having the number of clockwise edge increases equal to the number of counterclockwise edge increases in its adjacent leftward and upward neighbors.
1

%I #7 Oct 09 2015 04:28:14

%S 2320,28724,377568,5079336,69574220,962953968,13444055224,

%T 188823193784,2664428266336,37723583696052,535447018219820,

%U 7614062720813020,108418400331562368,1545312836738950012,22041527502028941280

%N Number of (n+1)X3 0..3 arrays with every 2 X 2 subblock having the number of clockwise edge increases equal to the number of counterclockwise edge increases in its adjacent leftward and upward neighbors.

%C Column 2 of A205642.

%H R. H. Hardin, <a href="/A205636/b205636.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 40*a(n-1) -538*a(n-2) +1600*a(n-3) +26601*a(n-4) -244741*a(n-5) +233209*a(n-6) +5541744*a(n-7) -21842748*a(n-8) -32944767*a(n-9) +354353234*a(n-10) -303682333*a(n-11) -2646718872*a(n-12) +5934353280*a(n-13) +9289012973*a(n-14) -41577894950*a(n-15) -1914076326*a(n-16) +162268698987*a(n-17) -118745894358*a(n-18) -375952312601*a(n-19) +516190082301*a(n-20) +490860223665*a(n-21) -1126227747881*a(n-22) -278402542035*a(n-23) +1492073391103*a(n-24) -58128143145*a(n-25) -1376232661944*a(n-26) +209754887441*a(n-27) +989829393787*a(n-28) -250378408153*a(n-29) -438696247203*a(n-30) +73070040366*a(n-31) +159024306012*a(n-32) +15073020296*a(n-33) -63596130670*a(n-34) -2882562568*a(n-35) +13670636368*a(n-36) -797920044*a(n-37) -999511826*a(n-38) +247638480*a(n-39) -138158645*a(n-40) +29008218*a(n-41) +1133604*a(n-42) -336960*a(n-43) for n>45.

%e Some solutions for n=4:

%e ..0..1..0....3..0..2....2..3..0....1..2..1....1..0..0....2..1..2....1..1..1

%e ..3..2..2....0..3..1....3..3..0....1..1..1....1..0..1....1..1..1....0..3..3

%e ..1..1..0....1..0..2....0..3..3....2..1..3....1..1..1....2..1..3....3..3..0

%e ..3..2..3....2..1..3....3..3..1....1..1..1....3..1..2....1..1..1....0..3..3

%e ..0..1..0....0..3..2....0..3..1....1..0..0....1..1..2....2..1..2....3..3..0

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 29 2012