

A205551


The least j such that n divides k^kj^j, where k (as in A205546) is the least number for which there is such a j.


2



1, 1, 1, 2, 1, 2, 2, 4, 2, 4, 1, 2, 1, 2, 1, 4, 1, 2, 4, 4, 2, 1, 2, 4, 4, 1, 3, 2, 4, 4, 1, 4, 3, 4, 1, 2, 4, 1, 1, 4, 5, 2, 1, 1, 1, 2, 4, 4, 6, 4, 1, 1, 7, 3, 6, 6, 7, 4, 5, 4, 5, 2, 2, 4, 1, 3, 6, 4, 2, 6, 1, 8, 3, 1, 6, 1, 6, 3, 8, 4, 6, 5, 12, 2, 1, 4, 1, 6, 2, 6, 1, 2, 9, 4, 5, 4, 6, 6, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

For a guide to related sequences, see A204892.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

1 divides 2^21^1 > k=2, j=1
2 divides 3^31^1 > k=3, j=1
3 divides 2^21^1 > k=2, j=1
4 divides 4^42^2 > k=2, j=2


MATHEMATICA

s = Table[n^n, {n, 1, 120}];
lk = Table[NestWhile[# + 1 &, 1,
Min[Table[Mod[s[[#]]  s[[j]], z], {j, 1, #  1}]] =!= 0 &], {z, 1, Length[s]}]
Table[NestWhile[# + 1 &, 1,
Mod[s[[lk[[j]]]]  s[[#]], j] =!= 0 &],
{j, 1, Length[lk]}]
(* Peter J. C. Moses, Jan 27 2012 *)


CROSSREFS

Cf. A204892.
Sequence in context: A294100 A139318 A205779 * A281130 A054541 A277891
Adjacent sequences: A205548 A205549 A205550 * A205552 A205553 A205554


KEYWORD

nonn


AUTHOR

Clark Kimberling, Jan 31 2012


STATUS

approved



