login
Number of (n+1)X4 0..3 arrays with every 2X2 subblock having the same number of equal edges, and new values 0..3 introduced in row major order
1

%I #5 Mar 31 2012 12:37:06

%S 443,10275,302148,10308161,375775257,14089784418,534222700494,

%T 20344347242650,776078866294049,29624881788204184,1131149173680436232,

%U 43194361906664947639,1649496572765035824729,62991579705321975196437

%N Number of (n+1)X4 0..3 arrays with every 2X2 subblock having the same number of equal edges, and new values 0..3 introduced in row major order

%C Column 3 of A205440

%H R. H. Hardin, <a href="/A205435/b205435.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 84*a(n-1) -2478*a(n-2) +31310*a(n-3) -105688*a(n-4) -1447728*a(n-5) +16566156*a(n-6) -52644616*a(n-7) -112948204*a(n-8) +1286364942*a(n-9) -3365762496*a(n-10) +989417336*a(n-11) +13822996149*a(n-12) -35396231412*a(n-13) +42837090738*a(n-14) -29104419996*a(n-15) +11035031040*a(n-16) -2101181472*a(n-17) +147246336*a(n-18)

%e Some solutions for n=4

%e ..0..0..1..0....0..0..0..0....0..1..1..2....0..1..0..0....0..0..0..0

%e ..2..0..0..0....0..1..1..1....1..1..2..2....0..0..0..1....0..0..0..0

%e ..0..0..1..1....0..0..0..0....3..1..1..2....3..3..0..0....0..0..0..0

%e ..3..0..0..0....0..1..0..1....1..1..2..2....3..0..0..1....0..0..0..0

%e ..0..0..1..0....1..1..1..1....0..1..1..2....3..3..0..0....0..0..0..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Jan 27 2012