login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least s(k) such that n divides s(k)-s(j) for some j<k, where s(j)=(1/2)C(2j,j).
3

%I #11 Dec 25 2023 18:17:31

%S 3,3,10,35,35,462,10,35,10,1716,1716,462,126,462,1716,35,35,24310,

%T 1716,6435,462,1716,92378,462,35,24310,462,462,126,1716,352716,35,

%U 1716,35,1716,24310,24310,1716,6435,6435,126,462,77558760,24310,24310

%N Least s(k) such that n divides s(k)-s(j) for some j<k, where s(j)=(1/2)C(2j,j).

%C For a guide to related sequences, see A204892.

%H Robert Israel, <a href="/A205388/b205388.txt">Table of n, a(n) for n = 1..10000</a>

%p N:= 100: # for a(1)..a(N)

%p S:=proc(j) option remember; binomial(2*j,j)/2 end proc:

%p A:= Vector(N): T:= {$1..N}:

%p for k from 2 while T <> {} do

%p for j from 1 to k-1 while T <>{} do

%p w:= S(k)-S(j);

%p d:= select(t -> w mod t = 0, T);

%p A[convert(d,list)]:= S(k);

%p T:= T minus d;

%p od;

%p od;

%p convert(A,list); # _Robert Israel_, Aug 28 2019

%t (See the program at A205386.)

%Y Cf. A205386, A204892.

%K nonn

%O 1,1

%A _Clark Kimberling_, Jan 27 2012