%I #5 Mar 31 2012 12:37:05
%S 8752,323856,12301024,471988176,18189909484,702420750928,
%T 27149753088796,1049837466171440,40603753889665636,
%U 1570549319417597660,60751409051086135564,2350012855527394133456,90905131505907584858392
%N Number of (n+1)X8 0..1 arrays with the number of clockwise edge increases in every 2X2 subblock the same
%C Column 7 of A205255
%H R. H. Hardin, <a href="/A205254/b205254.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 106*a(n-1) -4578*a(n-2) +110127*a(n-3) -1685691*a(n-4) +17662632*a(n-5) -132490685*a(n-6) +732439565*a(n-7) -3041749572*a(n-8) +9607185471*a(n-9) -23244897123*a(n-10) +43214022033*a(n-11) -61676422325*a(n-12) +67255934696*a(n-13) -55515488409*a(n-14) +34166147646*a(n-15) -15313024644*a(n-16) +4816467696*a(n-17) -999456992*a(n-18) +121777664*a(n-19) -6527616*a(n-20)
%e Some solutions for n=4
%e ..1..0..0..1..0..1..0..1....0..1..1..0..1..1..0..1....0..1..1..0..0..0..1..1
%e ..1..1..1..1..1..1..1..1....1..1..0..0..0..0..0..0....0..0..1..0..1..0..1..0
%e ..1..0..1..0..0..0..0..0....0..0..0..1..0..1..1..0....1..1..1..0..1..1..1..0
%e ..1..1..1..0..1..1..1..0....1..0..1..1..1..1..0..0....0..0..0..0..1..0..1..1
%e ..0..1..0..0..0..1..0..0....0..0..0..0..0..1..0..1....0..1..1..0..0..0..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Jan 24 2012