login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1) X 2 0..2 arrays with rows and columns of permanents of all 2 X 2 subblocks lexicographically nondecreasing, and all 2 X 2 permanents nonzero.
1

%I #7 Apr 27 2023 15:05:27

%S 56,266,1187,4584,17010,58892,198325,642908,2043150,6344716,19418611,

%T 58538770,174569904,515123368,1507602967,4378408682,12635495950,

%U 36252368030,103495137889,294126992350,832586122466,2348335515958

%N Number of (n+1) X 2 0..2 arrays with rows and columns of permanents of all 2 X 2 subblocks lexicographically nondecreasing, and all 2 X 2 permanents nonzero.

%C Column 1 of A205235.

%H R. H. Hardin, <a href="/A205228/b205228.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-1) +8*a(n-2) -69*a(n-3) +389*a(n-5) -198*a(n-6) -1143*a(n-7) +865*a(n-8) +1830*a(n-9) -1686*a(n-10) -1468*a(n-11) +1612*a(n-12) +376*a(n-13) -616*a(n-14) +96*a(n-15).

%e Some solutions for n=4

%e ..2..2....0..1....2..0....0..1....0..2....1..2....1..1....2..1....1..0....2..2

%e ..0..2....2..2....0..2....2..0....2..0....1..2....1..0....0..2....2..1....0..1

%e ..2..1....2..1....2..0....1..1....1..2....2..1....1..2....2..2....1..1....2..0

%e ..1..2....2..2....1..2....0..2....1..2....2..2....2..1....1..1....2..1....2..1

%e ..2..2....1..2....1..2....2..2....1..2....2..2....2..2....2..2....1..2....0..2

%Y Cf. A205235.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 24 2012