%I #5 Mar 31 2012 12:37:05
%S 13,159,159,2277,8479,2277,33831,474853,474853,33831,506493,26702419,
%T 100138314,26702419,506493,7594479,1502057181,21125224557,21125224557,
%U 1502057181,7594479,113908437,84495589507,4456641224469,16713430246949
%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with every 2X2 subblock having unequal diagonal elements or unequal antidiagonal elements, and new values 0..3 introduced in row major order
%C Table starts
%C .........13.............159.................2277.....................33831
%C ........159............8479...............474853..................26702419
%C .......2277..........474853............100138314...............21125224557
%C ......33831........26702419..........21125224557............16713430246949
%C .....506493......1502057181........4456641224469.........13223001109687815
%C ....7594479.....84495589507......940186880752830......10461512493459648399
%C ..113908437...4753161432989...198344748421652865....8276732547425415428669
%C .1708600311.267381383420963.41843425013764138653.6548221560172100787717125
%H R. H. Hardin, <a href="/A205170/b205170.txt">Table of n, a(n) for n = 1..112</a>
%e Some solutions for n=4 k=3
%e ..0..0..0..0....0..0..0..0....0..1..0..2....0..0..0..0....0..0..1..0
%e ..0..1..0..1....0..1..0..1....0..3..3..0....0..1..2..1....2..3..1..0
%e ..1..2..0..2....0..1..1..1....1..3..2..1....1..1..1..1....0..1..1..1
%e ..0..1..0..3....0..2..1..2....1..2..1..1....2..2..1..0....1..2..2..3
%e ..2..2..1..2....3..3..0..3....0..2..0..3....0..3..0..0....0..3..3..0
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Jan 22 2012