login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1) X 2 0..3 arrays with every 2 X 2 subblock having unequal diagonal elements or unequal antidiagonal elements, and new values 0..3 introduced in row major order.
2

%I #12 Mar 03 2018 13:52:26

%S 13,159,2277,33831,506493,7594479,113908437,1708600311,25628925933,

%T 384433652799,5766504083397,86497559125191,1297463380500573,

%U 19461950688376719,291929260268255157,4378938903851640471

%N Number of (n+1) X 2 0..3 arrays with every 2 X 2 subblock having unequal diagonal elements or unequal antidiagonal elements, and new values 0..3 introduced in row major order.

%C Column 1 of A205170.

%H R. H. Hardin, <a href="/A205163/b205163.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 18*a(n-1) - 45*a(n-2).

%F Conjectures from _Colin Barker_, Mar 03 2018: (Start)

%F G.f.: x*(13 - 75*x) / ((1 - 3*x)*(1 - 15*x)).

%F a(n) = 3^(n-1)*(2*5^n+3).

%F (End)

%e Some solutions for n=4:

%e 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

%e 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1

%e 0 0 0 0 0 2 0 2 1 2 0 2 2 0 1 2 2 0 0 0

%e 0 1 0 1 1 3 1 3 1 3 2 1 3 1 0 1 0 1 1 0

%e 1 1 0 0 0 1 2 0 0 0 1 0 1 2 0 0 3 0 2 3

%Y Cf. A205170.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 22 2012