login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+1)X7 0..1 arrays with the number of rightwards and downwards edge increases in each 2X2 subblock differing from the number in all its horizontal and vertical neighbors
1

%I #5 Mar 31 2012 12:37:04

%S 1432,386,524,784,1232,1984,2752,3936,5728,8288,12160,17872,26240,

%T 38512,56480,82744,121280,177648,260448,381528,559488,819728,1201888,

%U 1761224,2581728,3783824,5545600,8129368,11912032,17465728,25586784,37524656

%N Number of (n+1)X7 0..1 arrays with the number of rightwards and downwards edge increases in each 2X2 subblock differing from the number in all its horizontal and vertical neighbors

%C Column 6 of A205072

%H R. H. Hardin, <a href="/A205070/b205070.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-2) -2*a(n-6) -3*a(n-8) -3*a(n-10) -2*a(n-12) +a(n-14) +2*a(n-16) +9*a(n-18) +14*a(n-20) +17*a(n-22) +18*a(n-24) +17*a(n-26) +15*a(n-28) +10*a(n-30) +6*a(n-32) +3*a(n-34) +a(n-36) for n>41

%e Some solutions for n=4

%e ..0..1..0..0..0..1..0....1..1..0..0..0..1..0....0..1..0..0..0..1..0

%e ..0..1..1..1..0..1..1....1..1..1..1..0..1..1....1..1..1..1..0..1..1

%e ..0..0..0..1..0..0..0....0..1..0..1..0..0..0....0..1..0..1..0..0..0

%e ..1..1..0..1..1..1..0....0..1..1..1..1..1..0....0..1..1..1..1..1..0

%e ..0..1..0..0..0..1..0....0..0..0..1..0..1..0....0..0..0..1..0..1..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Jan 21 2012