login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A204763 T(n,k)=Number of (n+1)X(k+1) 0..5 arrays with the permanents of all 2X2 subblocks equal and nonzero 9

%I

%S 1175,3677,3677,11081,38553,11081,38789,132787,132787,38789,131613,

%T 1457775,833401,1457775,131613,469999,5791161,8155815,8155815,5791161,

%U 469999,1652217,57594105,60849871,306477369,60849871,57594105,1652217

%N T(n,k)=Number of (n+1)X(k+1) 0..5 arrays with the permanents of all 2X2 subblocks equal and nonzero

%C Table starts

%C ....1175.......3677.......11081..........38789..........131613

%C ....3677......38553......132787........1457775.........5791161

%C ...11081.....132787......833401........8155815........60849871

%C ...38789....1457775.....8155815......306477369......1905174177

%C ..131613....5791161....60849871.....1905174177.....27008204541

%C ..469999...57594105...544806119....68057441183....700833744055

%C .1652217..251988905..4311738123...456020452383..11569671578677

%C .5928687.2302211093.37343294941.15334587311409.271404487523701

%H R. H. Hardin, <a href="/A204763/b204763.txt">Table of n, a(n) for n = 1..97</a>

%e Some solutions for n=4 k=3

%e ..3..4..1..0....5..3..4..4....0..5..4..3....0..2..5..2....5..4..0..4

%e ..1..0..1..4....3..3..4..2....2..0..2..1....2..0..2..0....2..0..2..4

%e ..2..4..0..4....5..3..4..4....5..5..2..4....1..2..2..2....0..4..2..0

%e ..0..2..1..4....3..3..4..2....2..0..2..1....1..2..0..2....2..0..2..4

%e ..2..2..1..0....5..3..4..4....1..5..2..4....0..4..2..2....0..4..2..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 18 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 5 07:50 EDT 2021. Contains 346464 sequences. (Running on oeis4.)