login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1) X 3 0..1 arrays with the permanents of all 2 X 2 subblocks equal and nonzero.
1

%I #9 Jun 09 2018 06:49:39

%S 13,33,81,209,529,1361,3473,8913,22801,58449,149649,383441,982033,

%T 2515793,6443921,16507089,42282769,108311121,277442193,710686673,

%U 1820455441,4663202129,11945023889,30597832401,78377927953,200769257553

%N Number of (n+1) X 3 0..1 arrays with the permanents of all 2 X 2 subblocks equal and nonzero.

%C Column 2 of A204713.

%H R. H. Hardin, <a href="/A204707/b204707.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3).

%F Conjectures from _Colin Barker_, Jun 09 2018: (Start)

%F G.f.: x*(13 + 7*x - 24*x^2) / ((1 - x)*(1 - x - 4*x^2)).

%F a(n) = 1 + (2^(-1-n)*((1-sqrt(17))^n*(-19+5*sqrt(17)) + (1+sqrt(17))^n*(19+5*sqrt(17)))) / sqrt(17).

%F (End)

%e Some solutions for n=4:

%e ..1..0..1....0..1..0....1..1..1....0..1..1....1..1..0....0..1..1....0..1..1

%e ..1..1..1....1..1..1....0..1..0....1..0..1....0..1..1....1..1..0....1..0..1

%e ..1..0..1....1..0..1....1..1..1....1..1..0....1..0..1....0..1..1....1..1..1

%e ..1..1..1....0..1..0....1..0..1....0..1..1....1..1..0....1..1..0....1..0..1

%e ..1..0..1....1..1..1....0..1..1....1..1..0....0..1..1....1..0..1....0..1..1

%Y Cf. A204713.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 18 2012