Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #44 Jul 20 2019 12:29:00
%S 1,1,1,1,4,1,1,5,5,1,1,6,16,6,1,1,7,22,22,7,1,1,8,29,64,29,8,1,1,9,37,
%T 93,93,37,9,1,1,10,46,130,256,130,46,10,1,1,11,56,176,386,386,176,56,
%U 11,1,1,12,67,232,562,1024,562,232,67,12,1
%N Triangle read by rows: coordinator triangle for lattice A*_n.
%H Muniru A Asiru, <a href="/A204621/b204621.txt">Rows n=0..100 of triangle, flattened</a>
%H J. H. Conway and N. J. A. Sloane, <a href="https://doi.org/10.1098/rspa.1997.0126">Low-dimensional lattices. VII Coordination sequences</a>, Proc. R. Soc. Lond. A 453 (1997), 2369-2389.
%H Hidefumi Ohsugi, Akiyoshi Tsuchiya, <a href="https://arxiv.org/abs/1906.04719">The h∗-polynomials of locally anti-blocking lattice polytopes and their gamma-positivity</a>, arXiv:1906.04719 [math.CO], 2019.
%H Charles M. Wang, Josephine Yu, <a href="https://arxiv.org/abs/1707.04581">Toric h-vectors and Chow Betti Numbers of Dual Hypersimplices</a>, arXiv:1707.04581 [math.CO], 2017.
%F T(n, k) = Sum_{i=0..min(k,n-k)} binomial(n+1,i). [Wang and Yu, Theorem 4.1] - _Eric M. Schmidt_, Dec 07 2017
%e Triangle begins:
%e 1
%e 1 1
%e 1 4 1
%e 1 5 5 1
%e 1 6 16 6 1
%e 1 7 22 22 7 1
%e 1 8 29 64 29 8 1
%e 1 9 37 93 93 37 9 1
%e 1 10 46 130 256 130 46 10 1
%e 1 11 56 176 386 386 176 56 11 1
%e ...
%t T[n_, k_] := Sum[Binomial[n+1, i] , {i, 0, Min[k, n-k]}]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* _Amiram Eldar_, Dec 14 2018 *)
%o (GAP) Flat(List([0..10],n->List([0..n],k->Sum([0..Minimum(k,n-k)],i->Binomial(n+1,i))))); # _Muniru A Asiru_, Dec 14 2018
%Y The triangle for Z^n is A007318, A_n is A008459, D_n is A108558, D*_n is A008518.
%Y T(2n,n) gives A000302.
%K nonn,tabl
%O 0,5
%A _N. J. A. Sloane_, Jan 17 2012