login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 2*n-element subsets that can be chosen from {1,2,...,16*n} having element sum n*(16*n+1).
1

%I #11 Dec 07 2020 02:08:05

%S 1,8,790,148718,35154340,9408671330,2725410001024,834014033203632,

%T 265724127467961324,87318355216835049968,29402690636348418710858,

%U 10098693807141197229592054,3525753285145412581617963136,1248001014165722671454730108968,446964111600452023289482445527716

%N Number of 2*n-element subsets that can be chosen from {1,2,...,16*n} having element sum n*(16*n+1).

%C a(n) is the number of partitions of n*(16*n+1) into 2*n distinct parts <=16*n.

%e a(1) = 8 because there are 8 2-element subsets that can be chosen from {1,2,...,16} having element sum 17: {1,16}, {2,15}, {3,14}, {4,13}, {5,12}, {6,11}, {7,10}, {8,9}.

%p b:= proc(n, i, t) option remember;

%p `if`(i<t or n<t*(t+1)/2 or n>t*(2*i-t+1)/2, 0,

%p `if`(n=0, 1, b(n, i-1, t) +`if`(n<i, 0, b(n-i, i-1, t-1))))

%p end:

%p a:= n-> b(n*(16*n+1), 16*n, 2*n):

%p seq(a(n), n=0..10);

%t b[n_, i_, t_] /; i<t || n<t(t+1)/2 || n>t(2i-t+1)/2 = 0; b[0, _, _] = 1;

%t b[n_, i_, t_] := b[n, i, t] = b[n, i-1, t] + If[n<i, 0, b[n-i, i-1, t-1]];

%t a[n_] := b[n(16n+1), 16n, 2n];

%t a /@ Range[0, 10] (* _Jean-François Alcover_, Dec 07 2020, after _Alois P. Heinz_ *)

%Y Bisection of row n=8 of A204459.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Jan 18 2012