login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Symmetric matrix: f(i,j)=floor[(i+j+2)/4]-floor[(i+j-1)/4], by (constant) antidiagonals.
3

%I #6 Mar 30 2012 18:58:08

%S 1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,

%T 0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,

%U 0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

%N Symmetric matrix: f(i,j)=floor[(i+j+2)/4]-floor[(i+j-1)/4], by (constant) antidiagonals.

%C A block matrix over {0,1}. For guides to related matrices and permanents, see A204435 and A204263.

%e Northwest corner:

%e 1 1 1 0 1 1 1 0

%e 1 1 0 1 1 1 0 1

%e 1 0 1 1 1 0 1 1

%e 0 1 1 1 0 1 1 1

%e 1 1 1 0 1 1 1 0

%e 1 1 0 1 1 1 0 1

%e 1 0 1 1 1 0 1 1

%e 0 1 1 1 0 1 1 1

%t f[i_, j_] :=

%t Floor[(i + j + 2)/4] - Floor[(i + j - 1)/4];

%t m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]

%t TableForm[m[8]] (* 8x8 principal submatrix *)

%t Flatten[Table[f[i, n + 1 - i],

%t {n, 1, 14}, {i, 1, n}]] (* A204441 *)

%t Permanent[m_] :=

%t With[{a = Array[x, Length[m]]},

%t Coefficient[Times @@ (m.a), Times @@ a]];

%t Table[Permanent[m[n]], {n, 1, 22}] (* A204442 *)

%Y Cf. A204442, A204435.

%K nonn,tabl

%O 1

%A _Clark Kimberling_, Jan 15 2012