login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+2)X7 0..2 arrays with every 3X3 subblock having three strictly increasing elements in a row horizontally, vertically or nw-to-se diagonally
1

%I #5 Mar 31 2012 12:37:01

%S 70193731,518498299,3226550173,23029550325,218058070601,2236958307511,

%T 24512116048486,287545807301142,2717272262993725,29263225432573267,

%U 343848133776237262,3294999373893908466,35512680584021263930

%N Number of (n+2)X7 0..2 arrays with every 3X3 subblock having three strictly increasing elements in a row horizontally, vertically or nw-to-se diagonally

%C Column 5 of A204408

%H R. H. Hardin, <a href="/A204405/b204405.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 1459*a(n-3) +1966*a(n-4) +4770*a(n-5) -506169*a(n-6) -729427*a(n-7) -3282546*a(n-8) -3675924*a(n-9) +593623566*a(n-10) +951185496*a(n-11) -448513794*a(n-12) -1134670248*a(n-13) -109937354733*a(n-14) -77114079432*a(n-15) +279521405685*a(n-16) -459219944592*a(n-17) +4495749207192*a(n-18) -104133790895319*a(n-19) -323002370068452*a(n-20) -904277651409864*a(n-21) -1834603331470920*a(n-22) +8183503227524310*a(n-23) +53104054207803750*a(n-24) +160385257720234269*a(n-25) +27116289266862438*a(n-26) -358008897750745914*a(n-27) -2323633608815164830*a(n-28) -38965319111379563784*a(n-29) -45315387799040184984*a(n-30) -71831628696486933783*a(n-31) +961949802637047983886*a(n-32) +1928931499438085567358*a(n-33) +11098386323688924911358*a(n-34) -2781662912179647932907*a(n-35) -18944555420780928351*a(n-36) -180443740883973269163453*a(n-37) -174757345526978402459058*a(n-38) -1142655081431618149373196*a(n-39) -283873257921844853861508*a(n-40) -1758486400193961357313203*a(n-41) +5418976385678390064525933*a(n-42) -4333456233936328096284678*a(n-43) +52357850708967075345352317*a(n-44) +113875738890358473567768429*a(n-45) +332295902293018960798375482*a(n-46) +507808614055252846221859563*a(n-47) +1039268121466197777707272662*a(n-48) -1971166572615872347630335675*a(n-49) -4385193296346556587211012596*a(n-50) +3197026868983413864936749091*a(n-51) +4167793366663358828991037653*a(n-52) +1890644766282248394058214985*a(n-53) +7508799720706674292816020399*a(n-54) +2233085916306206014836593265*a(n-55) -3034648478031704823099463659*a(n-56) -1006738221464962955098662348*a(n-57) -459404171909369698783709196*a(n-58) +2414415236064884629304721732*a(n-59) +2254779373005991286687286144*a(n-60) +190196166013621067622528648*a(n-61) +64499687123220301474143972*a(n-62) +17220705727178598190290720*a(n-63) -175070382610419774734400*a(n-64) for n>75

%e Some solutions for n=3

%e ..1..1..1..0..1..0..2....1..1..1..0..0..2..0....0..2..1..0..2..2..2

%e ..0..0..1..1..0..1..2....2..1..0..1..2..0..2....0..1..0..1..0..1..2

%e ..0..1..2..2..1..0..0....0..1..2..2..0..1..2....0..1..2..2..1..0..0

%e ..0..2..0..1..2..1..1....0..0..1..2..1..2..0....2..0..1..2..2..1..0

%e ..1..0..1..2..0..2..2....1..0..0..1..2..2..0....0..0..0..1..2..2..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Jan 15 2012