login
Number of (n+2)X5 0..1 arrays with no 3X3 subblock having three equal diagonal elements or three equal antidiagonal elements, and new values 0..1 introduced in row major order
1

%I #5 Mar 31 2012 12:37:01

%S 2952,27378,259808,2196608,19698336,174658050,1547710600,13756760192,

%T 122079933752,1083689364402,9620166188160,85392166564352,

%U 758008400004000,6728631286807682,59728099395382600,530190438800064512

%N Number of (n+2)X5 0..1 arrays with no 3X3 subblock having three equal diagonal elements or three equal antidiagonal elements, and new values 0..1 introduced in row major order

%C Column 3 of A204398

%H R. H. Hardin, <a href="/A204393/b204393.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 10*a(n-1) -98*a(n-3) +a(n-4) +816*a(n-5) +1344*a(n-6) -20144*a(n-7) +33980*a(n-8) -153384*a(n-9) +165632*a(n-10) +118472*a(n-11) +123156*a(n-12) -307376*a(n-13) +93760*a(n-14) +1424560*a(n-15) -1230622*a(n-16) +5645436*a(n-17) -7141376*a(n-18) -7542860*a(n-19) +1618414*a(n-20) -161200*a(n-21) +1428928*a(n-22) +1374768*a(n-23) -638900*a(n-24) -9196456*a(n-25) +9826560*a(n-26) +9895368*a(n-27) -2398428*a(n-28) -1196496*a(n-29) +278208*a(n-30) +162000*a(n-31) -64233*a(n-32) -38070*a(n-33) -5346*a(n-35) +729*a(n-36) for n>37

%e Some solutions for n=3

%e ..0..1..1..0..0....0..1..1..1..0....0..0..1..0..0....0..1..0..1..1

%e ..1..1..0..0..0....1..1..1..1..0....0..1..0..1..1....1..1..0..1..1

%e ..0..1..1..1..1....0..0..1..0..0....0..1..0..1..0....1..0..0..0..0

%e ..1..0..0..0..1....0..0..1..0..0....1..0..0..1..1....1..0..1..0..1

%e ..1..0..1..0..1....1..1..1..1..0....1..0..1..1..0....1..1..1..0..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Jan 15 2012