login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204315
Numbers j such that floor(j^(1/4)) divides j.
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126
OFFSET
1,2
LINKS
FORMULA
Let f(x) = 4*x^3/3 + 5*x^2 + 26*x/3 and let k be the smallest integer x such that f(x) >= n. Then a(n) = (k+1)^4 - 1 - k * (f(k) - n). - David A. Corneth, Oct 06 2023
EXAMPLE
26 is a term as floor(26^(1/4)) = 2 divides 26. - David A. Corneth, Oct 04 2023
MAPLE
isA204315 := proc(n)
if modp(n, floor(root[4](n))) = 0 then
true ;
else
false ;
fi ;
end proc:
for n from 1 to 130 do
if isA204315(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Sep 10 2017
MATHEMATICA
Select[Range[150], Mod[#, Floor[Surd[#, 4]]]==0&] (* Harvey P. Dale, Oct 04 2023 *)
PROG
(PARI) a(n) = {my(k = 0, t = 0); while(t < n, k++; t = 4*k^3/3 + 5*k^2 + 26*k/3); (k+1)^4 - 1 - k * (t - n)} \\ David A. Corneth, Oct 06 2023
(PARI) first(n) = {my(res = vector(n), t = 0); for(i = 1, oo, forstep(j = i^4, (i + 1)^4 - 1, i, t++; if(t > n, return(res)); res[t] = j))} \\ David A. Corneth, Oct 06 2023
CROSSREFS
Sequence in context: A080197 A341749 A115847 * A032966 A122937 A371477
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 14 2012
STATUS
approved