login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Product_{n>=1} (1 + A002203(n)*x^n + (-1)^n*x^(2*n)) where A002203 is the companion Pell numbers.
5

%I #6 Mar 30 2012 18:37:34

%S 1,2,5,26,57,222,698,2096,6038,19730,58915,169952,516024,1484958,

%T 4397513,13029558,37094682,106442928,311875984,879620854,2522107990,

%U 7229956352,20398904648,57543374566,163053304047,457604617760,1283583473614,3606627675050

%N G.f.: Product_{n>=1} (1 + A002203(n)*x^n + (-1)^n*x^(2*n)) where A002203 is the companion Pell numbers.

%C Analog to Euler's identity: Product_{n>=1} (1+x^n) = Product_{n>=1} 1/(1-x^(2*n-1)), which is the g.f. for the number of partitions of distinct parts.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EulerIdentity.html">Euler Identity.</a>

%F G.f.: Product_{n>=1} 1/(1 - A002203(2*n-1)*x^(2*n-1) + (-1)^n*x^(4*n-2)).

%F G.f.: exp( Sum_{n>=1} A000593(n) * A002203(n) * x^n/n ) where A000593(n) = sum of odd divisors of n.

%F a(n) = (1/n)*Sum_{k=1..n} A000593(k) * A002203(k)*a(n-k) for n>0, with a(0) = 1.

%e G.f.: A(x) = 1 + 2*x + 5*x^2 + 26*x^3 + 57*x^4 + 222*x^5 + 698*x^6 +...

%e where A(x) = (1+2*x-x^2) * (1+6*x^2+x^4) * (1+14*x^3-x^6) * (1+34*x^4+x^8) * (1+82*x^5-x^10) * (1+198*x^6+x^12) *...* (1 + A002203(n)*x^n + (-1)^n*x^(2*n)) *...

%e and 1/A(x) = (1-2*x-x^2) * (1-14*x^3-x^6) * (1-82*x^5-x^10) * (1-478*x^7-x^14) * (1-2786*x^9-x^18) * (1-16238*x^11-x^22) *...* (1 - A002203(2*n-1)*x^(2*n-1) + (-1)^n*x^(4*n-2)) *...

%e Also, the logarithm of the g.f. equals the series:

%e log(A(x)) = 1*2*x + 1*6*x^2/2 + 4*14*x^3/3 + 1*34*x^4/4 + 6*82*x^5/5 + 4*198*x^6/6 + 8*478*x^7/7 + 1*1154*x^8/8 +...+ A000593(n)*A002203(n)*x^n/n +...

%e The companion Pell numbers (starting at offset 1) begin:

%e A002203 = [2,6,14,34,82,198,478,1154,2786,6726,16238,...]

%e and form the logarithm of a g.f. for Pell numbers:

%e log(1/(1-2*x-x^2)) = 2*x + 6*x^2/2 + 14*x^3/3 + 34*x^4/4 + 82*x^5/5 +...

%o (PARI) /* Subroutine used in PARI programs below: */

%o {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}

%o (PARI) {a(n)=polcoeff(prod(k=1,n,1+A002203(k)*x^k+(-1)^k*x^(2*k) +x*O(x^n)),n)}

%o (PARI) {a(n)=polcoeff(1/prod(k=1,n,1-A002203(2*k-1)*x^(2*k-1)-x^(4*k-2) +x*O(x^n)),n)}

%o (PARI) /* Exponential form using sum of odd divisors of n: */

%o {A000593(n)=if(n<1, 0, sumdiv(n, d, (-1)^(d+1)*n/d))}

%o {a(n)=polcoeff(exp(sum(k=1, n, A000593(k)*A002203(k)*x^k/k)+x*O(x^n)), n)}

%Y Cf. A203801, A204270, A000129 (Pell), A002203 (companion Pell), A000593.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jan 13 2012