login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Determinant of the n-th principal submatrix of A204237.
4

%I #14 Feb 21 2015 11:47:39

%S 2,-17,104,-560,2816,-13568,63488,-290816,1310720,-5832704,25690112,

%T -112197632,486539264,-2097152000,8992587776,-38386270208,

%U 163208757248,-691489734656,2920577761280,-12300786335744,51677046505472,-216603790671872,905997581287424

%N Determinant of the n-th principal submatrix of A204237.

%H Colin Barker, <a href="/A204238/b204238.txt">Table of n, a(n) for n = 1..100</a>

%F Conjectures from _Colin Barker_, Feb 21 2015: (Start)

%F a(n) = -8*a(n-1)-16*a(n-2).

%F G.f. -x*(x-2) / (4*x+1)^2.

%F (End)

%t f[i_, j_] := Max[3 i - j, 3 j - i];

%t m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]

%t TableForm[m[8]] (* 8x8 principal submatrix *)

%t Flatten[Table[f[i, n + 1 - i],

%t {n, 1, 12}, {i, 1, n}]] (* A204237 *)

%t Table[Det[m[n]], {n, 1, 22}] (* A204238 *)

%t Permanent[m_] :=

%t With[{a = Array[x, Length[m]]},

%t Coefficient[Times @@ (m.a), Times @@ a]];

%t Table[Permanent[m[n]], {n, 1, 14}] (* A204239 *)

%o (PARI) vector(20, n, matdet(matrix(n, n, i, j, max(3*i-j, 3*j-i)))) \\ _Colin Barker_, Feb 21 2015

%Y Cf. A204237, A204239.

%K sign

%O 1,1

%A _Clark Kimberling_, Jan 13 2012