%I #12 May 15 2017 23:40:41
%S 0,-1,-1,-1,1,0,1,1,-1,1,1,-3,-2,1,0,-1,-1,3,2,-1,-1,-1,5,4,-6,-3,1,0,
%T 1,1,-5,-4,6,3,-1,1,1,-7,-6,15,10,-10,-4,1,0,-1,-1,7,6,-15,-10,10,4,
%U -1,-1,-1,9,8,-28,-21,35,20,-15,-5,1,0,1,1,-9,-8,28,21
%N Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of (f(i,j)), where f(i,j)=(1 if max(i,j) is even, and 0 otherwise) as in A204175.
%C Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.
%D (For references regarding interlacing roots, see A202605.)
%e Top of the array:
%e 0....-1
%e -1....-1.....1
%e 0.....1.....1....-1
%e 1.....1....-3....-2...1
%t f[i_, j_] := If[Mod[Max[i, j], 2] == 0, 1, 0]
%t m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
%t TableForm[m[8]] (* 8x8 principal submatrix *)
%t Flatten[Table[f[i, n + 1 - i],
%t {n, 1, 15}, {i, 1, n}]] (* A204175 *)
%t p[n_] := CharacteristicPolynomial[m[n], x];
%t c[n_] := CoefficientList[p[n], x]
%t TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
%t Table[c[n], {n, 1, 12}]
%t Flatten[%] (* A204176 *)
%t TableForm[Table[c[n], {n, 1, 10}]]
%Y Cf. A204175, A202605, A204016.
%K tabf,sign
%O 1,12
%A _Clark Kimberling_, Jan 12 2012