login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+2)X6 0..2 arrays with every 3X3 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order
1

%I #5 Mar 31 2012 12:37:01

%S 127022,891662,4683434,26497814,146747822,826613438,4577683574,

%T 25733247662,142927791734,798288202838,4439968756022,24804328388438,

%U 138111783343814,770766788584982,4295189965272374,23962592671777622

%N Number of (n+2)X6 0..2 arrays with every 3X3 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order

%C Column 4 of A204153

%H R. H. Hardin, <a href="/A204149/b204149.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) +9*a(n-2) -16*a(n-3) +162*a(n-4) -680*a(n-5) +1316*a(n-6) +3646*a(n-7) -11416*a(n-8) -45560*a(n-9) +55336*a(n-10) -404680*a(n-11) -687384*a(n-12) +2793136*a(n-13) +5954432*a(n-14) -7133728*a(n-15) +26057024*a(n-16) +51024800*a(n-17) -122086400*a(n-18) -7443200*a(n-19) -170156800*a(n-20) -1801072000*a(n-21) -482608000*a(n-22) +6153120000*a(n-23) -3596160000*a(n-24) +9433600000*a(n-25) -1420800000*a(n-26) +6016000000*a(n-27) -39680000000*a(n-28) +25600000000*a(n-29) for n>30

%e Some solutions for n=4

%e ..0..1..1..0..0..2....0..1..2..1..2..0....0..0..1..0..1..0....0..0..0..1..1..0

%e ..0..1..0..0..0..0....1..0..1..2..0..2....2..0..0..1..0..2....1..0..0..0..0..1

%e ..1..0..0..0..0..0....1..1..0..0..2..0....1..0..0..0..1..2....1..1..0..0..0..1

%e ..1..0..0..0..0..1....1..1..0..0..0..2....0..0..0..0..0..1....1..1..1..0..0..0

%e ..0..0..0..0..1..1....2..0..1..0..0..1....0..0..0..0..0..0....2..1..1..1..0..0

%e ..0..0..0..1..2..2....0..1..1..1..0..0....2..2..0..0..1..0....1..0..2..1..1..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Jan 11 2012