login
Symmetric matrix based on f(i,j) = gcd(prime(i), prime(j)), by antidiagonals.
4

%I #9 Aug 02 2019 04:13:13

%S 2,1,1,1,3,1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,7,1,1,1,1,1,1,1,1,1,

%T 1,1,1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,13,1,1,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,17,1,1,1,1,1,1,1,1,1,1,1,1,1

%N Symmetric matrix based on f(i,j) = gcd(prime(i), prime(j)), by antidiagonals.

%C A204118 represents the matrix M given by f(i,j) = gcd(prime(i), prime(j)) for i >= 1 and j >= 1. See A204119 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

%e Northwest corner:

%e 2 1 1 1 1

%e 1 3 1 1 1

%e 1 1 5 1 1

%e 1 1 1 7 1

%e 1 1 1 1 11

%t f[i_, j_] := GCD[Prime[i], Prime[j]];

%t m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]

%t TableForm[m[8]] (* 8 X 8 principal submatrix *)

%t Flatten[Table[f[i, n + 1 - i],

%t {n, 1, 15}, {i, 1, n}]] (* A204118 *)

%t p[n_] := CharacteristicPolynomial[m[n], x];

%t c[n_] := CoefficientList[p[n], x]

%t TableForm[Flatten[Table[p[n], {n, 1, 10}]]]

%t Table[c[n], {n, 1, 12}]

%t Flatten[%] (* A204119 *)

%t TableForm[Table[c[n], {n, 1, 10}]]

%Y Cf. A204119, A204016, A202453.

%K nonn,tabl

%O 1,1

%A _Clark Kimberling_, Jan 11 2012