login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204104
Number of (n+1)X7 0..2 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) such that b(i,j)*b(i-1,j)-c(i,j)*c(i,j-1) is nonzero
1
36864, 1119744, 34012224, 1073134656, 34026967296, 1084257353088, 34589078037504, 1104253773912576, 35260853693757696, 1126080474692243328, 35963576641587458304, 1148590432691774845056, 36683475387804277514496
OFFSET
1,1
COMMENTS
Also 0..2 arrays with no 2X2 subblock having equal diagonal elements or equal antidiagonal elements
LINKS
FORMULA
Empirical: a(n) = 39*a(n-1) +117*a(n-2) -13419*a(n-3) +42120*a(n-4) +1465776*a(n-5) -7558272*a(n-6) -59591376*a(n-7) +389959596*a(n-8) +776691180*a(n-9) -7353962460*a(n-10) -230291100*a(n-11) +53356676400*a(n-12) -41452398000*a(n-13) -124357194000*a(n-14) +143489070000*a(n-15)
EXAMPLE
Some solutions for n=5
..2..0..0..2..1..2..1....2..1..0..2..1..2..2....2..0..0..0..2..0..2
..1..1..1..2..0..2..0....2..1..0..2..0..0..0....2..1..1..1..1..0..2
..2..2..0..2..0..1..0....0..1..0..1..1..2..2....2..0..0..2..2..0..2
..0..1..0..2..0..1..2....0..1..2..2..0..0..1....1..1..1..1..1..0..1
..2..2..0..1..0..1..2....2..1..0..1..1..2..1....2..0..2..2..2..0..1
..0..1..0..1..2..1..2....2..1..2..2..0..2..0....1..0..1..0..1..0..1
CROSSREFS
Sequence in context: A187032 A251386 A175748 * A229509 A223304 A190383
KEYWORD
nonn
AUTHOR
R. H. Hardin Jan 10 2012
STATUS
approved