Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #54 May 21 2024 01:24:38
%S 1,1,4,14,48,164,560,1912,6528,22288,76096,259808,887040,3028544,
%T 10340096,35303296,120532992,411525376,1405035520,4797091328,
%U 16378294272,55918994432,190919389184,651839567872,2225519493120,7598398836736,25942556360704,88573427769344
%N The number of 1 by n Haunted Mirror Maze puzzles with a unique solution ending with a mirror, where mirror orientation is fixed.
%C Apart from a leading 1, the same as A007070. - _R. J. Mathar_, Jan 16 2012
%C Since the uniqueness of a solution is unaffected by the orientation of the mirrors in this 1 by n case, we assume mirror orientation is fixed for this sequence.
%C Dropping the requirement that the board end with a mirror gives A204090. Allowing for mirror orientation gives A204091. Allowing for orientation and dropping the requirement gives A204092.
%H Vincenzo Librandi, <a href="/A204089/b204089.txt">Table of n, a(n) for n = 0..1000</a>
%H David Millar, <a href="http://thegriddle.net/tags/haunted">Haunted Puzzles</a>, The Griddle.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2).
%F G.f.: (1-x)*(1-2*x)/(1-4*x+2*x^2).
%F a(n) = Sum_{i=0..n-1} a(i) * (2^(n-i)-1), with a(0)=1.
%F a(n) = 4*a(n-1) - 2*a(n-2), a(1)=1, a(2)=4.
%F G.f.: (1-x)*(1-2*x)/(1 - 4*x + 2*x^2) = 1/(1 + U(0)) where U(k)= 1 - 2^k/(1 - x/(x - 2^k/U(k+1) )); (continued fraction 3rd kind, 3-step). - _Sergei N. Gladkovskii_, Dec 05 2012
%F a(n) = ((2+sqrt(2))^n - (2-sqrt(2))^n)/(2*sqrt(2)). - _Colin Barker_, Dec 06 2015
%F a(n) = [n=0] + 2^((n-1)/2)*ChebyshevU(n-1, sqrt(2)). - _G. C. Greubel_, Dec 21 2022
%F E.g.f.: 1 + exp(2*x)*sinh(sqrt(2)*x)/sqrt(2). - _Stefano Spezia_, May 20 2024
%e For M(3) we would have the following possibilities:
%e ('Z', 'Z', '/')
%e ('Z', 'G', '/')
%e ('Z', '/', '/')
%e ('V', 'V', '/')
%e ('V', 'G', '/')
%e ('V', '/', '/')
%e ('G', 'Z', '/')
%e ('G', 'V', '/')
%e ('G', 'G', '/')
%e ('G', '/', '/')
%e ('/', 'Z', '/')
%e ('/', 'V', '/')
%e ('/', 'G', '/')
%e ('/', '/', '/')
%t LinearRecurrence[{4,-2}, {1,1,4}, 31]
%o (Python)
%o def a(n, d={0:1, 1:4}):
%o if n in d: return d[n]
%o d[n] = 4*a(n-1) - 2*a(n-2)
%o return d[n]
%o print([1]+[a(n) for n in range(31)])
%o (Python)
%o #Produces a(n) through enumeration and also displays boards:
%o def Mprint(n):
%o .print('The following generate boards with a unique solution')
%o .s=0
%o .for x in product(['Z', 'V', 'G', '/'], repeat=n):
%o ..if x[-1]=='/':
%o ...#Splitting x up into a list pieces
%o ...y=list(x)
%o ...z=list()
%o ...while y:
%o ....#print(y)
%o ....if '/' in y:
%o .....if y[0] != '/': #Don't need to add blank pieces to z
%o ......z.append(y[:y.index('/')])
%o .....y=y[y.index('/')+1:]
%o ....else:
%o .....z.append(y)
%o .....y=[]
%o ...#For each element in the list checking for Z&V together
%o ...goodword=True
%o ...for w in z:
%o ....if 'Z' in w and 'V' in w:
%o .....goodword=False
%o ...if goodword:
%o ....s+=1
%o ....print(x)
%o .return s
%o (PARI) Vec((1-x)*(1-2*x)/(1-4*x+2*x^2) + O(x^30)) \\ _Michel Marcus_, Dec 06 2015
%o (Magma) [1] cat [n le 2 select 4^(n-1) else 4*Self(n-1) - 2*Self(n-2): n in [1..30]]; // _G. C. Greubel_, Dec 21 2022
%o (SageMath)
%o def A204089(n): return int(n==0) + 2^((n-1)/2)*chebyshev_U(n-1, sqrt(2))
%o [A204089(n) for n in range(31)] # _G. C. Greubel_, Dec 21 2022
%Y Cf. A007070, A204090, A204091, A204092.
%K nonn,easy
%O 0,3
%A _David Nacin_, Jan 10 2012