Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Oct 30 2014 10:05:51
%S 1,1,5,21,101,501,2561,13345,70561,377281,2035285,11059205,60454005,
%T 332138405,1832677185,10150115201,56398558081,314273655745,
%U 1755700634981,9830544087221,55155558312901,310027473436821,1745567243959105,9843160519978401,55582528404717601
%N G.f.: exp( Sum_{n>=1} A001333(n)^2 * x^n/n ) where A001333(n) = A002203(n)/2, one-half the companion Pell numbers.
%C a(n) == 1 (mod 5) iff n has no 2's in its base 5 expansion (A023729), otherwise a(n) == 0 (mod 5); this is a conjecture needing proof.
%H Paul D. Hanna, <a href="/A204061/b204061.txt">Table of n, a(n) for n = 0..625</a>
%F G.f.: 1 / ( sqrt(1+x) * (1-6*x+x^2)^(1/4) ).
%F Self-convolution yields A026933: Sum_{k=0..n} a(n-k)*a(k) = Sum_{k=0..n} D(n-k,k)^2 where D(n,k) = A008288(n,k) are the Delannoy numbers.
%F a(n) ~ 2^(1/8) * GAMMA(3/4) * (3+2*sqrt(2))^(n+1/2) / (4 * Pi * n^(3/4)). - _Vaclav Kotesovec_, Oct 30 2014
%e G.f.: A(x) = 1 + x + 5*x^2 + 21*x^3 + 101*x^4 + 501*x^5 + 2561*x^6 +...
%e where log(A(x)) = x + 3^2*x^2/2 + 7^2*x^3/3 + 17^2*x^4/4 + 41^2*x^5/5 + 99^2*x^6/6 + 239^2*x^7/7 +...+ A001333(n)^2*x^n/n +...
%e The last digit of the terms in this sequence seems to be either a '1' or a '5':
%e by conjecture, a(n) == 0 (mod 5) whenever n has a 2 in its base 5 expansion;
%e if true, terms a(2*5^k) through a(3*5^k - 1) all end with digit '5' for k>=0.
%o (PARI) {A001333(n)=polcoeff((1-x)/(1-2*x-x^2+x*O(x^n)),n)}
%o {a(n)=polcoeff(exp(sum(k=1, n, A001333(k)^2*x^k/k)+x*O(x^n)), n)}
%o (PARI) {a(n)=polcoeff(1/(sqrt(1+x+x*O(x^n))*(1-6*x+x^2+x*O(x^n))^(1/4)),n)}
%Y Cf. A204062, A026933, A001333, A023729.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Jan 10 2012