

A204047


Smallest number that is npersistent but not (n+1)persistent, i.e., k, 2k, ..., nk, but not (n+1)k, are pandigital in the sense of A171102; 0 if such a number does not exist.


7



1023456798, 1023456789, 1052674893, 1053274689, 13047685942, 36492195078, 153846076923, 251793406487, 0, 1189658042735, 5128207435967, 3846154076923, 125583660720493, 125583660493072, 180106284973592, 201062849735918
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(9) is 0 because any 9persistent number is also 10persistent. Indeed, if n is pandigital, 10*n is pandigital as well.
In the same way, a(10m1)=0 for all m>0 since if kn is pandigital for all k=1,...,10m1, then mn is pandigital and so is 10mn.  M. F. Hasler, Jan 10 2012


REFERENCES

Ross Honsberger, More Mathematical Morsels, Mathematical Association of America, 1991, pages 1518.


LINKS

Table of n, a(n) for n=1..16.


EXAMPLE

k=36492195078 is the smallest number such that k, 2k, 3k, 4k, 5k, and 6k, each contain all ten digits, but 7k=255445365546 contains only five of the ten, so a(6)= 36492195078.


CROSSREFS

Cf. A051264, A051018, A051019, A051020, A204096, A204097.
Sequence in context: A154566 A217535 A180489 * A051264 A175845 A225295
Adjacent sequences: A204044 A204045 A204046 * A204048 A204049 A204050


KEYWORD

nonn,base


AUTHOR

Hans Havermann, Jan 09 2012


EXTENSIONS

a(7)a(16) from Giovanni Resta, Jan 10 2012


STATUS

approved



