%I #5 Mar 30 2012 18:58:07
%S 1,1,1,1,4,1,1,4,4,1,1,4,7,4,1,1,4,7,7,4,1,1,4,7,10,7,4,1,1,4,7,10,10,
%T 7,4,1,1,4,7,10,13,10,7,4,1,1,4,7,10,13,13,10,7,4,1,1,4,7,10,13,16,13,
%U 10,7,4,1,1,4,7,10,13,16,16,13,10,7,4,1,1,4,7,10,13,16,19,16
%N Symmetric matrix based on f(i,j)=min(3i-2,3j-2), by antidiagonals.
%C A204028 represents the matrix M given by f(i,j)=min(3i-2,3j-2) for i>=1 and j>=1. See A204029 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.
%e Northwest corner:
%e 1...1...1...1....1....1
%e 1...4...4...4....4....4
%e 1...4...7...7....7....7
%e 1...4...7...10...10...10
%e 1...4...7...10...13...13
%t f[i_, j_] := Min[3 i - 2, 3 j - 2];
%t m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
%t TableForm[m[6]] (* 6x6 principal submatrix *)
%t Flatten[Table[f[i, n + 1 - i],
%t {n, 1, 15}, {i, 1, n}]] (* A204028 *)
%t p[n_] := CharacteristicPolynomial[m[n], x];
%t c[n_] := CoefficientList[p[n], x]
%t TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
%t Table[c[n], {n, 1, 12}]
%t Flatten[%] (* A204029 *)
%t TableForm[Table[c[n], {n, 1, 10}]]
%Y Cf. A204029, A204016, A202453.
%K nonn,tabl
%O 1,5
%A _Clark Kimberling_, Jan 11 2012