%I #6 Jul 12 2012 00:39:58
%S 1,-1,1,-3,1,1,-5,6,-1,2,-12,21,-11,1,6,-40,86,-70,19,-1,30,-212,508,
%T -510,214,-32,1,240,-1756,4482,-5056,2646,-614,53,-1,3120,-23308,
%U 61748,-74480,44002,-12764,1703,-87,1,65520,-495708,1343084
%N Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of M (as in A204026), given by min(F(i+1),F(j+1)), where F=A000045 (Fibonacci numbers).
%C Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.
%D (For references regarding interlacing roots, see A202605.)
%e Top of the array:
%e 1....-1
%e 1....-3....1
%e 1....-5....6....-1
%e 2....-12...21...-11....1
%t f[i_, j_] := Min[Fibonacci[i + 1], Fibonacci[j + 1]]
%t m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
%t TableForm[m[6]] (* 6x6 principal submatrix *)
%t Flatten[Table[f[i, n + 1 - i],
%t {n, 1, 15}, {i, 1, n}]] (* A204026 *)
%t p[n_] := CharacteristicPolynomial[m[n], x];
%t c[n_] := CoefficientList[p[n], x]
%t TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
%t Table[c[n], {n, 1, 12}]
%t Flatten[%] (* A204027 *)
%t TableForm[Table[c[n], {n, 1, 10}]]
%Y Cf. A204026, A202605, A204016.
%K tabl,sign
%O 1,4
%A _Clark Kimberling_, Jan 11 2012