Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 08 2022 08:46:01
%S 2,3,3,4,8,4,5,10,10,5,6,12,18,12,6,7,14,21,21,14,7,8,16,24,32,24,16,
%T 8,9,18,27,36,36,27,18,9,10,20,30,40,50,40,30,20,10,11,22,33,44,55,55,
%U 44,33,22,11,12,24,36,48,60,72,60,48,36,24,12,13,26,39,52,65,78,78,65,52,39,26,13
%N Symmetric matrix based on f(i,j) = (i+j)*min(i,j), by antidiagonals.
%C This sequence represents the matrix M given by f(i,j) = (i+j)*min{i,j} for i >= 1 and j >= 1.
%C See A203991 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
%H G. C. Greubel, <a href="/A203990/b203990.txt">Table of n, a(n) for the first 100 rows, flattened</a>
%e Northwest corner:
%e 2, 3, 4, 5, 6, 7
%e 3, 8, 10, 12, 14, 16
%e 4, 10, 18, 21, 24, 27
%e 5, 12, 21, 32, 36, 40
%t (* First program *)
%t f[i_, j_] := (i + j) Min[i, j];
%t m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
%t TableForm[m[6]] (* 6x6 principal submatrix *)
%t Flatten[Table[f[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] (* A203990 *)
%t p[n_] := CharacteristicPolynomial[m[n], x];
%t c[n_] := CoefficientList[p[n], x]
%t TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
%t Table[c[n], {n, 1, 12}]
%t Flatten[%] (* A203991 *)
%t TableForm[Table[c[n], {n, 1, 10}]]
%t (* Second program *)
%t Table[(n+1)*Min[n-k+1, k], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Jul 23 2019 *)
%o (PARI) for(n=1,15, for(k=1,n, print1((n+1)*min(n-k+1,k), ", "))) \\ _G. C. Greubel_, Jul 23 2019
%o (Magma) [(n+1)*Min(n-k+1,k): k in [1..n], n in [1..15]]; // _G. C. Greubel_, Jul 23 2019
%o (Sage) [[(n+1)*min(n-k+1,k) for n in (1..n)] for n in (1..15)] # _G. C. Greubel_, Jul 23 2019
%o (GAP) Flat(List([1..15], n-> List([1..n], k-> (n+1)*Minimum(n-k+1,k) ))); # _G. C. Greubel_, Jul 23 2019
%Y Cf. A203991, A202453.
%K nonn,tabl
%O 1,1
%A _Clark Kimberling_, Jan 09 2012