login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203959
Number of (n+1)X3 0..2 arrays with column and row pair sums b(i,j)=a(i,j)+a(i,j-1) and c(i,j)=a(i,j)+a(i-1,j) such that rows of b(i,j) and columns of c(i,j) are lexicographically nondecreasing
1
121, 851, 6586, 45307, 276516, 1512850, 7559349, 35013044, 152204393, 627158203, 2469369220, 9352485042, 34260022340, 121947287786, 423429014908, 1439022449239, 4800503801815, 15758894017829, 51018990415219
OFFSET
1,1
COMMENTS
Column 2 of A203965
LINKS
FORMULA
Empirical: a(n) = 22*a(n-1) -218*a(n-2) +1274*a(n-3) -4794*a(n-4) +11682*a(n-5) -16350*a(n-6) +3138*a(n-7) +38004*a(n-8) -79674*a(n-9) +61398*a(n-10) +35118*a(n-11) -127974*a(n-12) +113430*a(n-13) -3210*a(n-14) -85098*a(n-15) +79101*a(n-16) -21204*a(n-17) -17108*a(n-18) +19328*a(n-19) -8656*a(n-20) +1984*a(n-21) -192*a(n-22) for n>25
EXAMPLE
Some solutions for n=4
..2..0..1....2..0..1....1..2..2....0..1..2....2..2..2....1..1..2....1..0..2
..0..2..1....0..2..1....1..2..2....2..1..1....2..2..2....2..2..2....0..1..1
..2..1..2....2..1..2....1..2..2....1..2..0....2..2..2....2..2..2....2..1..1
..1..2..1....2..1..2....2..2..2....1..2..2....2..2..2....2..2..2....1..2..1
..2..1..2....1..2..1....2..2..2....1..2..2....2..2..2....2..2..2....1..2..2
CROSSREFS
Sequence in context: A361658 A293588 A365969 * A362319 A211472 A223389
KEYWORD
nonn
AUTHOR
R. H. Hardin Jan 08 2012
STATUS
approved