Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Feb 13 2023 05:25:33
%S 1,-1,1,-2,1,1,-3,3,-1,1,-5,8,-5,1,1,-7,17,-17,7,-1,1,-9,30,-45,30,-9,
%T 1,1,-11,47,-98,103,-52,12,-1,1,-13,68,-183,269,-212,83,-15,1,1,-15,
%U 93,-308,588,-651,399,-123,18,-1,1,-17,122,-481,1136
%N Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A203945.
%C Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.
%D (For references regarding interlacing roots, see A202605.)
%e Top of the array:
%e 1...-1
%e 1...-2....1
%e 1...-3....3....-1
%e 1...-5....8....-5....1
%e 1...-7....17...-17...7...-1
%t t = {1, 0, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t, t, t}];
%t f[k_] := t1[[k]];
%t U[n_] := NestList[Most[Prepend[#, 0]] &, #,
%t Length[#] - 1] &[Table[f[k], {k, 1, n}]];
%t L[n_] := Transpose[U[n]];
%t p[n_] := CharacteristicPolynomial[L[n].U[n], x];
%t c[n_] := CoefficientList[p[n], x]
%t TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
%t Table[c[n], {n, 1, 12}]
%t Flatten[%] (* A203946 *)
%t TableForm[Table[c[n], {n, 1, 10}]]
%Y Cf. A203945, A202605.
%K tabf,sign
%O 1,4
%A _Clark Kimberling_, Jan 08 2012