login
a(n)=f(a(1),a(2),...,a(n-1)), where f=(n-2)-nd elementary symmetric function and a(1)=1, a(2)=1, a(3)=1.
1

%I #5 Mar 30 2012 18:58:07

%S 1,1,1,3,10,103,10639,113191411,12812295557045431,

%T 164154917441086094769014370809371,

%U 26946836920089791747880319422619013022132207748812110372395151551

%N a(n)=f(a(1),a(2),...,a(n-1)), where f=(n-2)-nd elementary symmetric function and a(1)=1, a(2)=1, a(3)=1.

%C The same recurrence applied to initial values

%C a(1)=1, a(2)=1, a(3)=2 yields A057438.

%C The same recurrence applied to initial values

%C a(1)=1, a(2)=2, a(3)=3 yields A061482.

%t a[1] = 1; a[2] = 1; a[3] = 1;

%t t[3] = {a[1], a[2], a[3]};

%t a[n_] := SymmetricPolynomial[n - 2, t[n - 1]]

%t t[n_] := Append[t[n - 1], {a[n]}]

%t Flatten[Table[a[n], {n, 1, 12}]] (* A203903 *)

%Y Cf. A057438, A061482.

%K nonn

%O 1,4

%A _Clark Kimberling_, Jan 07 2012