login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1) X 3 0..2 arrays with every 2 X 2 subblock having equal diagonal elements or equal antidiagonal elements.
1

%I #8 Jun 05 2018 11:17:52

%S 225,1971,17289,151659,1330353,11669859,102368025,897972507,

%T 7877016513,69097203603,606120799401,5316892787403,46639793487825,

%U 409124355815619,3588839615364921,31481307826653051,276154091209147617

%N Number of (n+1) X 3 0..2 arrays with every 2 X 2 subblock having equal diagonal elements or equal antidiagonal elements.

%C Column 2 of A203835.

%H R. H. Hardin, <a href="/A203829/b203829.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 9*a(n-1) -2*a(n-2).

%F Conjectures from _Colin Barker_, Jun 05 2018: (Start)

%F G.f.: 9*x*(25 - 6*x) / (1 - 9*x + 2*x^2).

%F a(n) = (9*2^(-1-n)*((9-sqrt(73))^n*(-23+3*sqrt(73)) + (9+sqrt(73))^n*(23+3*sqrt(73)))) / sqrt(73).

%F (End)

%e Some solutions for n=4:

%e ..1..1..2....0..0..2....2..1..0....0..0..2....1..1..2....2..2..2....2..0..1

%e ..0..1..1....0..0..0....0..2..1....0..0..0....1..1..1....1..2..0....0..0..0

%e ..2..0..1....0..1..0....1..0..2....1..0..0....1..1..1....2..2..2....2..0..1

%e ..1..2..0....0..0..1....1..1..0....1..1..0....0..1..2....1..2..1....2..2..0

%e ..0..1..2....0..2..0....2..1..1....0..1..1....2..0..1....2..0..2....2..0..0

%Y Cf. A203835.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 06 2012