login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: exp( Sum_{n>=1} A000204(n)^5 * x^n/n ) where A000204 is the Lucas numbers.
9

%I #13 Dec 26 2017 03:15:06

%S 1,1,122,463,11985,85456,1262166,12018742,145326748,1540766090,

%T 17495016342,191731126832,2138972609189,23652975370501,

%U 262682339212290,2911255335387883,32296421465575573,358120616523262016,3971885483375619384,44047530724737577400

%N G.f.: exp( Sum_{n>=1} A000204(n)^5 * x^n/n ) where A000204 is the Lucas numbers.

%C More generally, exp(Sum_{k>=1} A000204(k)^(2*n+1) * x^k/k) = Product_{k=0..n} 1/(1 - (-1)^(n-k)*A000204(2*k+1)*x - x^2)^binomial(2*n+1,n-k).

%H G. C. Greubel, <a href="/A203805/b203805.txt">Table of n, a(n) for n = 0..950</a>

%F G.f.: 1/( (1-x-x^2)^10 * (1+4*x-x^2)^5 * (1-11*x-x^2) ).

%F G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^A203855(n) where A203855(n) = (1/n)*Sum_{d|n} moebius(n/d)*Lucas(d)^4.

%e G.f.: A(x) = 1 + x + 122*x^2 + 463*x^3 + 11985*x^4 + 85456*x^5 + ...

%e where

%e log(A(x)) = x + 3^5*x^2/2 + 4^5*x^3/3 + 7^5*x^4/4 + 11^5*x^5/5 + 18^5*x^6/6 + 29^5*x^7/7 + 47^5*x^8/8 + ... + Lucas(n)^5*x^n/n + ...

%t CoefficientList[Series[1/((1 - x - x^2)^10*(1 + 4*x - x^2)^5*(1 - 11*x - x^2)), {x, 0, 50}], x] (* _G. C. Greubel_, Dec 25 2017 *)

%o (PARI) /* Subroutine used in PARI programs below: */

%o {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}

%o (PARI) {a(n)=polcoeff(exp(sum(k=1, n, Lucas(k)^5*x^k/k)+x*O(x^n)), n)}

%o (PARI) {a(n,m=2)=polcoeff(prod(k=0,m, 1/(1 - (-1)^(m-k)*Lucas(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1,m-k)),n)}

%Y Cf. A002571, A203803, A203804, A203806, A203807, A203808, A203809.

%Y Cf. A203855, A203800.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jan 06 2012