login
G.f.: Product_{n>=1} (1 + Lucas(n)*x^n + (-1)^n*x^(2*n)) where Lucas(n) = A000204(n).
2

%I #10 Dec 14 2015 11:04:55

%S 1,1,2,7,9,27,53,109,206,463,907,1756,3591,6849,13706,27132,51477,

%T 99168,195160,366269,707173,1355524,2558372,4836092,9186600,17245564,

%U 32428375,61057276,113946770,212495896,397836811,737325660,1368659832,2544085015,4694930535

%N G.f.: Product_{n>=1} (1 + Lucas(n)*x^n + (-1)^n*x^(2*n)) where Lucas(n) = A000204(n).

%C Analog to Euler's identity: Product_{n>=1} (1+x^n) = Product_{n>=1} 1/(1-x^(2*n-1)), which is the g.f. for the number of partitions into distinct parts.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EulerIdentity.html">Euler Identity.</a>

%F G.f.: Product_{n>=1} 1/(1 - Lucas(2*n-1)*x^(2*n-1) + (-1)^n*x^(4*n-2)).

%F G.f.: exp( Sum_{n>=1} A000593(n) * Lucas(n) * x^n/n ) where A000593(n) = sum of odd divisors of n.

%F a(n) = (1/n)*Sum_{k=1..n} A000593(k)*Lucas(k)*a(n-k) for n>0, with a(0) = 1.

%e G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 9*x^4 + 27*x^5 + 53*x^6 +...

%e where A(x) = (1+x-x^2) * (1+3*x^2+x^4) * (1+4*x^3-x^6) * (1+7*x^4+x^8) * (1+11*x^5-x^10) * (1+18*x^6+x^12) *...* (1 + Lucas(n)*x^n + (-1)^n*x^(2*n)) *...

%e and 1/A(x) = (1-x-x^2) * (1-4*x^3-x^6) * (1-11*x^5-x^10) * (1-29*x^7-x^14) * (1-76*x^9-x^18) * (1-199*x^11-x^22) *...* (1 - Lucas(2*n-1)*x^(2*n-1) + (-1)^n*x^(4*n-2)) *...

%e Also, the logarithm of the g.f. equals the series:

%e log(A(x)) = x + 1*3*x^2/2 + 4*4*x^3/3 + 1*7*x^4/4 + 6*11*x^5/5 + 4*18*x^6/6 + 8*29*x^7/7 + 1*47*x^8/8 +...+ A000593(n)*Lucas(n)*x^n/n +...

%t max = 40; s = Product[1 + LucasL[n]*x^n + (-1)^n*x^(2*n), {n, 1, max}] + O[x]^max; CoefficientList[s, x] (* _Jean-François Alcover_, Dec 14 2015 *)

%o (PARI) /* Subroutine used in PARI programs below: */

%o {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}

%o (PARI) {a(n)=polcoeff(prod(k=1,n,1+Lucas(k)*x^k+(-1)^k*x^(2*k) +x*O(x^n)),n)}

%o (PARI) {a(n)=polcoeff(1/prod(k=1,n,1-Lucas(2*k-1)*x^(2*k-1)-x^(4*k-2) +x*O(x^n)),n)}

%o (PARI) /* Exponential form using sum of odd divisors of n: */

%o {A000593(n)=if(n<1, 0, sumdiv(n, d, (-1)^(d+1)*n/d))}

%o {a(n)=polcoeff(exp(sum(k=1, n, A000593(k)*Lucas(k)*x^k/k)+x*O(x^n)), n)}

%Y Cf. A156234, A203860, A203850, A000204, A000593.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jan 11 2012